Advertisement

A Computational Bilayer Surface Model of Human Atria

  • Simon Labarthe
  • Edward Vigmond
  • Yves Coudière
  • Jacques Henry
  • Hubert Cochet
  • Pierre Jaïs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

A bilayer surface model of human atria is presented. A rule-based bi-layer physiological fibre arrangement is defined on an imaged in-vivo atrial geometry. This fibre architecture includes the main structures of fibres in the right and left atria, including the main transmural heterogeneities and transseptal connexions.

The precision of the corresponding bilayer mathematical model is assessed by comparing the case of two sheets of orthogonal fibres to a three dimensional slab of tissue. A comparison of bilayer and monolayer simulations of sinus propagation is finally proposed.

This model allows inclusion of transmural heterogeneities while maintaining small computational costs associated with surface models. It then proposes a good trade-off between model precision and computing efforts for performing complex atrial simulations for a clinical use.

Keywords

Pulmonary Vein Left Atrium Right Atrium Volumetric Model Human Atrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dössel, O., Krueger, M.W., Weber, F.M., et al.: Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing 50, 773–799 (2012)CrossRefGoogle Scholar
  2. 2.
    Krueger, M.W., et al.: Modeling atrial fiber orientation in patient-specific geometries: A semi-automatic rule-based approach. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 223–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Zhao, J., Butters, T.D., Zhang, H., et al.: An image-based model of atrial muscular architecture / clinical perspective. Circulation: Arrhythmia and Electrophysiology 5(2), 361–370 (2012)CrossRefGoogle Scholar
  4. 4.
    Labarthe, S., Coudière, Y., Henry, J., Cochet, H.: A Semi-Automatic Method To Construct Atrial Fibre Structures: A Tool for Atrial Simulations. In: CinC 2012 - Computing in Cardiology, pp. 881–884 (2012)Google Scholar
  5. 5.
    Derakhchan, K., Li, D., Courtemanche, M., et al.: Method for simultaneous epicardial and endocardial mapping of in vivo canine heart: Application to atrial conduction properties and arrhythmia mechanisms. Journal of Cardiovascular Electrophysiology 12(5), 548–555 (2001)CrossRefGoogle Scholar
  6. 6.
    Eckstein, J., Maesen, B., Linz, D., et al.: Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat. Cardiovascular Research 89(4), 816–824 (2011)CrossRefGoogle Scholar
  7. 7.
    Michowitz, Y., Nakahara, S., Bourke, T., et al.: Electrophysiological differences between the epicardium and the endocardium of the left atrium. Pacing and Clinical Electrophysiology 34(1), 37–46 (2011)CrossRefGoogle Scholar
  8. 8.
    Gharaviri, A., Verheule, S., Eckstein, J., et al.: A computer model of endo-epicardial electrical dissociation and transmural conduction during atrial fibrillation. Europace 14(suppl. 5), v10–v16 (2012)Google Scholar
  9. 9.
    Bendahmane, M., Coudière, Y., Henry, J., Labarthe, S.: An asymptotic two-layers monodomain model of cardiac electrophysiology in the atria (to be published)Google Scholar
  10. 10.
    Ho, S.Y., Anderson, R.H., Sánchez-Quintana, D.: Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovascular Research 54(2), 325–336 (2002)CrossRefGoogle Scholar
  11. 11.
    Saito, T., Waki, K., Becker, A.E.: Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias. Journal of Cardiovascular Electrophysiology 11, 888–894 (2000)CrossRefGoogle Scholar
  12. 12.
    Fedorov, V.V., Schuessler, R.B., Hemphill, M., et al.: Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria. Circulation Research 104(7), 915–923 (2009)CrossRefGoogle Scholar
  13. 13.
    Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology - Heart and Circulatory Physiology 321, H301–H321 (1998)Google Scholar
  14. 14.
    Vigmond, E.J., Hughes, M., Plank, G., Leon, L.J.: Computational tools for modeling electrical activity in cardiac tissue. Journal of Electrocardiology 36(supplement 1), 69–74 (2003)CrossRefGoogle Scholar
  15. 15.
    Toussaint, N., Sermesant, M., Stoeck, C.T., Kozerke, S., Batchelor, P.G.: In vivo human 3d cardiac fibre architecture: Reconstruction using curvilinear interpolation of diffusion tensor images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Harrild, D.M., Henriquez, C.S.: A computer model of normal conduction in the human atria. Circ. Res. 87(7), e25–e36 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simon Labarthe
    • 1
    • 2
    • 3
  • Edward Vigmond
    • 1
    • 2
    • 3
  • Yves Coudière
    • 1
    • 2
    • 3
  • Jacques Henry
    • 1
    • 2
    • 3
  • Hubert Cochet
    • 3
    • 4
  • Pierre Jaïs
    • 3
    • 4
  1. 1.IMB - Université Bordeaux Segalen - Université Bordeaux 1BordeauxFrance
  2. 2.INRIABordeauxFrance
  3. 3.Liryc InstituteCHU / Univ. de Bordeaux / INSERM U1045BordeauxFrance
  4. 4.Hôpital Haut-Lévêque CHU BordeauxUniversité Bordeaux SegalenFrance

Personalised recommendations