Speckle Tracking in Interpolated Echocardiography to Estimate Heart Motion

  • Ariel Hernán Curiale
  • Gonzalo Vegas Sánchez-Ferrero
  • Santiago Aja-Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


The heart motion estimation plays an important role in identifying different types of pathology. For this purpose, ultrasound imaging has commonly used due to its high time resolution. In this modality, the speckle is used as a characteristic feature of tissues to improve the accuracy of heart motion estimation which has important clinical implications. However, speckle tracking methods are commonly based on the statistics of speckle, which are affected by the preprocessing steps during the acquisition. This work aims for developing a speckle tracking method for myocardial motion estimation that considers the interpolation step performed to achieve the Cartesian arrangement of the ultrasonic image. The evaluation of the method was carried out using two types of synthetic images and by comparing to other state-of-the-art methods. Results showed that the methods based on speckle features provide a more realistic motion of the heart and follow the natural torsion than others. Besides, the proposed method obtains the best registration performance in most of the deformations tested.


Motion Estimation Synthetic Image Angular Error Speckle Tracking Block Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burckhardt, C.: Speckle in ultrasound b-mode scans. IEEE Trans. Sonics Ultrason 25(1), 1–6 (1978)CrossRefGoogle Scholar
  2. 2.
    Notomi, Y., Lysyansky, P., Setser, R.M., Shiota, T., Popović, Z.B., Martin-Miklovic, M.G., Weaver, J.A., Oryszak, S.J., Greenberg, N.L., White, R.D., Thomas, J.D.: Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45(12), 2034–2041 (2005)CrossRefGoogle Scholar
  3. 3.
    Helle-Valle, T., Crosby, J., Edvardsen, T., Lyseggen, E., Amundsen, B.H., Smith, H.J., Rosen, B.D., Lima, J.A., Torp, H., Ihlen, H., Smiseth, O.A.: New noninvasive method for assessment of left ventricular rotation. Circulation 112(20), 3149–3156 (2005)CrossRefGoogle Scholar
  4. 4.
    Miyazaki, C., Powell, B.D., Bruce, C.J., Espinosa, R.E., Redfield, M.M., Miller, F.A., Hayes, D.L., Cha, Y.M., Oh, J.K.: Comparison of echocardiographic dyssynchrony assessment by tissue velocity and strain imaging in subjects with or without systolic dysfunction and with or without left bundle-branch block. Circulation 117(20), 2617–2625 (2008)CrossRefGoogle Scholar
  5. 5.
    Wang, J., Khoury, D., Thohan, V., Torre-Amione, G., Nagueh, S.: Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115(11), 1376–1383 (2007)CrossRefGoogle Scholar
  6. 6.
    Lim, P., Buakhamsri, A., Popovic, Z.B., Greenberg, N.L., Patel, D., Thomas, J.D., Grimm, R.A.: Longitudinal strain delay index by speckle tracking imaging: A new marker of response to cardiac resynchronization therapy. Circulation 118(11), 1130–1137 (2008)CrossRefGoogle Scholar
  7. 7.
    Mohana Shankar, P.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 47(3), 727–736 (2000)CrossRefGoogle Scholar
  8. 8.
    Tao, Z., Tagare, H., Beaty, J.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans. Med. Imag. 25(11), 1483–1491 (2006)CrossRefGoogle Scholar
  9. 9.
    Nillesen, M.M., Lopata, R.G., Gerrits, I.H., Kapusta, L., Thijssen, J.M., de Korte, C.L.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound in Med. & Biol. 34(4), 674–680 (2008)CrossRefGoogle Scholar
  10. 10.
    Yue, Y., Clark, J., Khoury, D.: Speckle tracking in intracardiac echocardiography for the assessment of myocardial deformation. IEEE Trans. Biomed. Eng. 56(2), 416–425 (2009)CrossRefGoogle Scholar
  11. 11.
    Cohen, B., Dinstein, I.: New maximum likelihood motion estimation schemes for noisy ultrasound images. Pattern Recognition 35(2), 455–463 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Vegas-Sánchez-Ferrero, G., Martín-Martínez, D., Aja-Fernández, S., Palencia, C.: On the influence of interpolation on probabilistic models for ultrasonic images. In: International Symposium on Biomedical Imaging, pp. 292–295. IEEE Press (2010)Google Scholar
  13. 13.
    Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-hill, New York (1991)Google Scholar
  14. 14.
    Kotropoulos, C., Magnisalis, X., Pitas, I., Strintzis, M.: Nonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks. IEEE Trans. Image Process. 3(1), 65–77 (1994)CrossRefGoogle Scholar
  15. 15.
    Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans. Image Process. 12(11), 1427–1442 (2003)CrossRefGoogle Scholar
  16. 16.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: A demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Tristán, A., Arribas, J.I.: A fast B-spline pseudo-inversion algorithm for consistent image registration. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 768–775. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Vegas-Sanchez-Ferrero, G., Aja-Fernandez, S., Martin-Fernandez, M., Frangi, A.F., Palencia, C.: Probabilistic-driven oriented speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 518–525. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ariel Hernán Curiale
    • 1
  • Gonzalo Vegas Sánchez-Ferrero
    • 1
  • Santiago Aja-Fernández
    • 1
  1. 1.ETSI de TelecomunicaciónUniversidad de ValladolidSpain

Personalised recommendations