Advertisement

Cardiac Motion and Deformation Estimation from Tagged MRI Sequences Using a Temporal Coherent Image Registration Framework

  • Pedro Morais
  • Brecht Heyde
  • Daniel Barbosa
  • Sandro Queirós
  • Piet Claus
  • Jan D’hooge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Non-rigid image registration has been proposed to extract myocardial motion and deformation from tagged Magnetic Resonance Imaging (t-MRI). Initial efforts focused on finding a set of pairwise registrations, while more recent methods proposed to perform a joint image alignment to exploit temporal information. However, the latter methods usually measure image similarity with respect to the first phase, which may not be optimal due to tag fading. In the present study, we therefore propose a sequential 2D+t registration method exploiting temporal information based on a frame-by-frame image similarity. The method was first tested on synthetic data to fine-tune its parameters, and its applicability was illustrated in human patient data. Furthermore, the sequential 2D+t method was able to detect dysfunctional regions corresponding to delayed-enhanced MRI areas in a database consisting of 8 pig datasets. While differences with respect to traditional 2D methods are limited in terms of end-systolic strain accuracy, including temporal information lead to both smoother trajectories and smoother strain curves.

Keywords

Non-rigid registration motion deformation tagged MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, H., Amini, A.: Cardiac motion and deformation recovery from MRI: A review. IEEE Trans. Medical Imaging 31(2), 487–503 (2012)CrossRefGoogle Scholar
  2. 2.
    Smal, I., Carranza-Herrezuelo, N., Klein, S., Niessen, W., Meijering, E.: Quantitative comparison of tracking methods for motion analysis in tagged MRI. In: IEEE Int. Symposium on Biomedical Imaging (2011)Google Scholar
  3. 3.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  4. 4.
    Chandrashekara, R., Mohiaddin, R., Rueckert, D.: Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration. IEEE Trans. Medical Imaging 23(10), 1245–1250 (2004)CrossRefGoogle Scholar
  5. 5.
    Oubel, E., De Craene, M., Hero, A., Pourmorteza, A., Huguet, M., Avegliano, G., Bijnens, B., Frangi, A.: Cardiac motion estimation by joint alignment of tagged MRI sequences. Medical Image Analysis 16(1), 339–350 (2012)CrossRefGoogle Scholar
  6. 6.
    Chandrashekara, R., Mohiaddin, R., Rueckert, D.: Cardiac motion tracking in tagged MR images using a 4D B-spline motion model and nonrigid image registration. In: IEEE Int. Symposium on Biomedical Imaging, pp. 468–471 (2004)Google Scholar
  7. 7.
    Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans. Image Processing 12(11), 1427–1442 (2003)CrossRefGoogle Scholar
  8. 8.
    Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing 16(5), 1190–1208 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Tobon-Gomez, C., De Craene, M., Dahl, A., Kapetanakis, S., Carr-White, G., Lutz, A., Rasche, V., Etyngier, P., Kozerke, S., Schaeffter, T., et al.: A multimodal database for the 1st cardiac motion analysis challenge. Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, 33–44 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pedro Morais
    • 1
  • Brecht Heyde
    • 1
  • Daniel Barbosa
    • 1
  • Sandro Queirós
    • 1
  • Piet Claus
    • 1
  • Jan D’hooge
    • 1
  1. 1.Cardiovascular Imaging and DynamicsUniversity of LeuvenLeuvenBelgium

Personalised recommendations