Advertisement

Dimensional Reduction of Cardiac Models for Effective Validation and Calibration

  • Matthieu Caruel
  • Radomir Chabiniok
  • Philippe Moireau
  • Yves Lecarpentier
  • Dominique Chapelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Complex 3D beating heart models are now available, but their complexity makes calibration and validation very difficult tasks. We thus propose a systematic approach of deriving simplified reduced-dimensional models, in “0D” – typically, to represent a cardiac cavity, or several coupled cavities – and in “1D” – to model elongated structures such as fibers or myocytes. As illustrations of our approach, we demonstrate model validation based on experiments performed with papillary muscles, and calibration using patient-specific pressure-volume loops.

Keywords

Dimensional Reduction Papillary Muscle Myosin Head Couple Cavity Cardiac Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cazorla, O., Le Guennec, J.-Y., White, E.: Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. J. Mol. Cell. Cardiol. 32(5), 735–744 (2000)CrossRefGoogle Scholar
  2. 2.
    Chapelle, D., Bathe, K.J.: The Finite Element Analysis of Shells – Fundamentals, 2nd edn. Springer (2011)Google Scholar
  3. 3.
    Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: An energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Com. 10(2), 189–211 (2012)CrossRefGoogle Scholar
  4. 4.
    Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. T. Roy. Soc. A 367(1902), 3445–3475 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hunter, P.J., Pullan, A.J., Smaill, B.H.: Modeling total heart function. Annu. Rev. Biomed. Eng. 5, 147–177 (2003)CrossRefGoogle Scholar
  6. 6.
    Huxley, A.F.: Muscle Structure and Theories of Contraction. Prog. Biophys. Mol. Bio. 7, 258–318 (1957)Google Scholar
  7. 7.
    Lecarpentier, Y.C., Chuck, L.H., Housmans, P.R., De Clerck, N.M., Brutsaert, D.L.: Nature of load dependence of relaxation in cardiac muscle. Am. J. Physiol.-Heart C (1979)Google Scholar
  8. 8.
    Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84(28), 1743–1759 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Smith, N., et al.: euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthieu Caruel
    • 1
  • Radomir Chabiniok
    • 2
  • Philippe Moireau
    • 1
  • Yves Lecarpentier
    • 3
    • 4
  • Dominique Chapelle
    • 1
  1. 1.M∃DISIM TeamInria Saclay Ile-de-FrancePalaiseauFrance
  2. 2.Division of Imaging Sciences & Biomedical EngineeringSt Thomas’ Hospital, King’s College LondonUK
  3. 3.Institut du CoeurHôpital de la Pitié-SalpêtrièreParisFrance
  4. 4.Centre de Recherche CliniqueHôpital de MeauxFrance

Personalised recommendations