An Inverse Spectral Method to Localize Discordant Alternans Regions on the Heart from Body Surface Measurements

  • Jaume Coll-Font
  • Burak Erem
  • Alain Karma
  • Dana H. Brooks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Spatially discordant T-wave alternans (TWA) has been shown to be linked to the genesis of ventricular fibrillation. Identification of discordant TWA through spatial characterization of TWA patterns in the heart has the potential to improve sudden cardiac death risk stratification. In this paper we present a method to solve a new variant of the inverse problem in electrocardiography that is tailored to estimate the TWA regions on the heart from non-invasive measurements on the body surface. We evaluate our method using both body surface potentials synthesized from heart surface potentials generated with ECGSIM and from potentials measured on a canine heart, and we show that this method detects the main regions in the heart undergoing TWA.


Inverse Problem Spectral Method Inverse Solution Temporal Regularization Sudden Cardiac Death Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenbaum, D., Jackson, L., Smith, J., Garan, H., Ruskin, J., Cohen, R.: Electrical alternans and vulnerability to ventricular arrythmias. New. Engl. J. Med. 330(4), 235–241 (1994)CrossRefGoogle Scholar
  2. 2.
    Romero, I., Grubb, N., Clegg, G., Robertson, C., Addison, P., Watson, J.: T-wave alternans found in preventricular tachyarrhythmias in CCU patients using a wavelet transform-based methodology. IEEE T. Bio-Med. Eng. 55, 2658–2665 (2008)CrossRefGoogle Scholar
  3. 3.
    Hunt, A.: T Wave Alternans in high arrhythmic risk patients: analysis in time and frequency domains: a pilot study. BMC Cardiov. Dis. 2, 6 (2002)CrossRefGoogle Scholar
  4. 4.
    Martínez, J., Olmos, S.: Methodological principles of T wave alternans analysis: a unified framework. IEEE T. Bio-Med. Eng. 52, 599–613 (2005)CrossRefGoogle Scholar
  5. 5.
    Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4(3), 461–472 (1996)CrossRefGoogle Scholar
  6. 6.
    Weiss, J., Karma, A., Shiferaw, Y., Chen, P., Garfinkel, A., Qu, Z.: From pulsus to pulseless: the saga of cardiac alternans. Circ. Res. 98(10), 1244–1253 (2006)CrossRefGoogle Scholar
  7. 7.
    Pastore, J.M., Girouard, S.D., Laurita, K.R., Akar, F.G., Rosenbaum, D.S.: Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circ. 99, 1385–1394 (1999)CrossRefGoogle Scholar
  8. 8.
    Martínez, J., Olmos, S., Wagner, G., Laguna, P.: Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE T. Bio-Med. Eng. 53, 701–711 (2006)CrossRefGoogle Scholar
  9. 9.
    Janusek, D., Kania, M., Zaczek, R., Zavala-Fernandez, H., Zbieć, A., Opolski, G., Maniewski, R.: Application of Wavelet Based Denoising for T-Wave Alternans Analysis in High Resolution ECG Maps. Meas. Sci. Rev. 11, 181–184 (2011)CrossRefGoogle Scholar
  10. 10.
    Sassi, R., Mainardi, L.: Refined Estimate of the Dominant T-Wave. Cinc. (5), 845–848 (2010)Google Scholar
  11. 11.
    Sassi, R., Mainardi, L., Cerutti, S.: Amplitude of Dominant T Wave Alternans assessment on ECGs obtained from a biophysical model. In: EMBS, vol. (8), pp. 5872–5875 (September 2011)Google Scholar
  12. 12.
    Oostendorp, T., van Oosterom, A.: Ecgsim: an interactive tool for the study of the relation between the electric activity of the heart and the qrst waveforms at the body surface. In: IEMBS, vol. 2, pp. 3559–3562 (September 2004)Google Scholar
  13. 13.
    Janusek, D., Kania, M., Kepski, R., Maniewski, R.: Simulation of T-Wave Alternans and its Relation to the Duration of Ventricular Action Potentials Disturbance. Therapy, 21–27 (2010)Google Scholar
  14. 14.
    Adachi, K., Ohnishi, Y., Shima, T., Yamashiro, K., Takei, A., Tamura, N., Yokoyama, M.: Determinant of microvolt-level t-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34(2), 374–380 (1999)CrossRefGoogle Scholar
  15. 15.
    Gold, M., Bloomfield, D., Anderson, K., El-Sherif, N., Wilber, D., Groh, W., Estes, N.R., Kaufman, E., Greenberg, M., Rosenbaum, D.: A comparison of t-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J. Am. Coll. Cardiol. 36(7), 2247–2253 (2000)CrossRefGoogle Scholar
  16. 16.
    Smith, J., Clancy, E.A., Valeri, C., Ruskin, J., Cohen, R.: Electrical alternans and cardiac electrical instability. Circ. 77, 110–121 (1988)CrossRefGoogle Scholar
  17. 17.
    Madias, J.: T-wave alternans and the confounding role of the T-wave amplitude. Journal of Electrocardiology 45, 294–295 (2012)CrossRefGoogle Scholar
  18. 18.
    MacLeod, R., Buist, M.: The forward problem of electrocardiography. In: Comp. Elec. Springer (2010)Google Scholar
  19. 19.
    Pullan, A., Cheng, L., Nash, M., Ghodrati, A., MacLeod, R., Brooks, D.: The inverse problem of electrocardiography. In: Comp. Elec. Springer (2010)Google Scholar
  20. 20.
    Erem, B., Brooks, D.: Differential geometric approximation of the gradient and hessian on a triangulated manifold. In: ISBI (2011)Google Scholar
  21. 21.
    Hansen, C.: Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms 6(1), 1–35 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    SCI Institute, SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI) (2013),
  23. 23.
    MacLeod, R., Stinstra, J., Lew, S., Whitaker, R., Swenson, D., Cole, M., Krueger, J., Brooks, D., Johnson, C.: Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples. Philos. T. R. Soc. A 367(1896), 2293–2310 (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    Martínez-Orellana, R., Erem, B., Brooks, D.H.: Time Invariant Multielectrode Averaging For Biomedical Signals. In: ICASSP (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jaume Coll-Font
    • 1
  • Burak Erem
    • 1
  • Alain Karma
    • 2
  • Dana H. Brooks
    • 1
  1. 1.B-Spiral Group, Dept. of ECENortheastern UniversityBostonUSA
  2. 2.Physics Dept.Northeastern UniversityBostonUSA

Personalised recommendations