Advertisement

Data-Driven Reduction of a Cardiac Myofilament Model

  • Tommaso Mansi
  • Bogdan Georgescu
  • Jagir Hussan
  • Peter J. Hunter
  • Ali Kamen
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity.

Keywords

Sarcomere Length Multivariate Adaptive Regression Spline Locally Linear Embedding Linear Manifold Manifold Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell, S., McCulloch, A.: Multi-scale computational models of familial hypertrophic cardiomyopathy: genotype to phenotype. Journal of The Royal Society Interface 8(64), 1550–1561 (2011)CrossRefGoogle Scholar
  2. 2.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)zbMATHGoogle Scholar
  3. 3.
    Isaeva, J., Sæbo, S., Wyller, J., Nhek, S., Martens, H.: Fast and comprehensive fitting of complex mathematical models to massive amounts of empirical data. Chemometrics and Intelligent Laboratory Systems (2011)Google Scholar
  4. 4.
    Land, S., Niederer, S., Smith, N.: Efficient computational methods for strongly coupled cardiac electromechanics. IEEE TBE 59(5), 1219–1228 (2012)Google Scholar
  5. 5.
    Niederer, S., Land, S., Omholt, S., Smith, N.: Interpreting genetic effects through models of cardiac electromechanics. American Journal of Physiology-Heart and Circulatory Physiology 303(11), H1294–H1303 (2012)Google Scholar
  6. 6.
    Rice, J., Wang, F., Bers, D., De Tombe, P.: Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophysical Journal 95(5), 2368–2390 (2008)CrossRefGoogle Scholar
  7. 7.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  8. 8.
    Shannon, T., Wang, F., Puglisi, J., Weber, C., Bers, D.: A mathematical treatment of integrated ca dynamics within the ventricular myocyte. Biophysical journal 87(5), 3351–3371 (2004)CrossRefGoogle Scholar
  9. 9.
    Tøndel, K., Indahl, U., Gjuvsland, A., Vik, J., Hunter, P., Omholt, S., Martens, H.: Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models. BMC Systems Biology 5(1), 90 (2011)CrossRefGoogle Scholar
  10. 10.
    Tøndel, K., Vik, J., Martens, H., Indahl, U., Smith, N., Omholt, S.: Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models. Chemometr. Intell. Lab (2012)Google Scholar
  11. 11.
    Williams, G., Smith, G., Sobie, E., Jafri, M.: Models of cardiac excitation–contraction coupling in ventricular myocytes. Math. Biosci. 226(1), 1–15 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tommaso Mansi
    • 1
  • Bogdan Georgescu
    • 1
  • Jagir Hussan
    • 2
  • Peter J. Hunter
    • 2
  • Ali Kamen
    • 1
  • Dorin Comaniciu
    • 1
  1. 1.Imaging and Computer VisionSiemens Corporation, Corporate TechnologyPrincetonUSA
  2. 2.Auckland Bioengineering InstituteThe University of AucklandNew Zealand

Personalised recommendations