Skip to main content

Kalman Filter with Augmented Measurement Model: An ECG Imaging Simulation Study

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

ECG imaging is a non-invasive technique of characterizing the electrical activity and the corresponding excitation conduction of the heart using body surface ECG. The method may provide great opportunities in the planning of cardiac interventions and in the diagnosis of cardiac diseases. This work introduces an algorithm for the imaging of transmembrane voltages that is based on a Kalman filter with an augmented measurement model. In the latter, a regularization term is integrated as additional ”measurement”. The filter is trained using a-priori-knowledge from a simulation model. Two effects are investigated: the influence of the training data on the reconstruction quality and the representation of a-priori knowledge in the trained covariance matrices. The proposed algorithm shows a promising quality of reconstruction and may be used in the future to introduce generic physiological knowledge in solutions of cardiac source imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cuculich, P.S., Wang, Y., Lindsay, B.D., Faddis, M.N., Schuessler, R.B., Damiano, R.J., Li, L., Rudy, Y.: Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 122, 1364–1372 (2010)

    Article  Google Scholar 

  2. Ramanathan, C., Jia, P., Ghanem, R., Calvetti, D., Rudy, Y.: Noninvasive electrocardiographic imaging (ecgi): Application of the generalized minimal residual (gmres) method. Ann. Biomed. Eng. 31, 981–994 (2003)

    Article  Google Scholar 

  3. Brooks, D.H., Ahmad, G.F., MacLeod, R.S., Maratos, G.M.: Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. Biomed. Eng. 46, 3–18 (1999)

    Article  Google Scholar 

  4. Zhang, Y., Ghodrati, A., Brooks, D.H.: An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework. Inverse Probl. 21, 357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Joly, D., Goussard, Y., Savard, P.: Time-recursive solution to the inverse problem of electrocardiography: A model-based approach. In: Proc. IEEE/EMBS Conf., vol. 15, pp. 767–768 (1993)

    Google Scholar 

  6. El-Jakl, J., Champagnat, F., Goussard, Y.: Time-space regularization of the inverse problem of electrocardiography. In: Proc. IEEE/EMBS Conf., vol. 17, pp. 213–214 (1995)

    Google Scholar 

  7. Aydin, U., Dogrusoz, Y.S.: A kalman filter-based approach to reduce the effects of geometric errors and the measurement noise in the inverse ecg problem. Med. Biol. Eng. Comput. 49, 1003–1013 (2011)

    Article  Google Scholar 

  8. Berrier, K.L., Sorensen, D.C., Khoury, D.S.: Solving the inverse problem of electrocardiography using a duncan and horn formulation of the kalman filter. IEEE Trans. Biomed. Eng. 51, 507–515 (2004)

    Article  Google Scholar 

  9. Ghodrati, A., Brooks, D.H., Tadmor, G., MacLeod, R.S.: Wavefront-based models for inverse electrocardiography. IEEE Trans. Biomed. Eng. 53, 1821–1831 (2006)

    Article  Google Scholar 

  10. Liu, C., He, B.: Noninvasive estimation of global activation sequence using the extended kalman filter. IEEE Trans. Biomed. Eng. 58, 541–549 (2011)

    Article  Google Scholar 

  11. Wang, L., Zhang, H., Wong, K., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57, 296–315 (2010)

    Article  Google Scholar 

  12. Wang, L.: Computational reduction for noninvasive transmural electrophysiological imaging. Comput. Biol. Med. 43, 184–199 (2013)

    Article  Google Scholar 

  13. Schulze, W., Farina, D., Jiang, Y., Dössel, O.: A kalman filter with integrated tikhonov-regularization to solve the inverse problem of electrocardiography. In: IFMBE Proc., vol. 25, pp. 821–824 (2009)

    Google Scholar 

  14. Kaipio, J., Somersalo, E.: Nonstationary inverse problems and state estimation. J. Inverse Ill-Posed Probl. 7, 273–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiltunen, P., Särkkä, S., Nissilä, I., Lajunen, A., Lampinen, J.: State space regularization in the nonstationary inverse problem for diffuse optical tomography. Inverse Probl. 27, 025009 (2011)

    Google Scholar 

  16. Loewe, A., Schulze, W.H.W., Jiang, Y., Wilhelms, M., Dössel, O.: Determination of optimal electrode positions of a wearable ecg monitoring system for detection of myocardial ischemia: a simulation study. Proc. Comp. in Card. 38, 741–744 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulze, W.H.W., Henar, F.E., Potyagaylo, D., Loewe, A., Stenroos, M., Dössel, O. (2013). Kalman Filter with Augmented Measurement Model: An ECG Imaging Simulation Study. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics