Advertisement

Fast Left Ventricle Tracking in 3D Echocardiographic Data Using Anatomical Affine Optical Flow

  • Daniel Barbosa
  • Brecht Heyde
  • Thomas Dietenbeck
  • Denis Friboulet
  • Jan D’hooge
  • Olivier Bernard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Global functional assessment remains a central part of the diagnostic process in daily cardiology practice. Furthermore, real-time 3D echocardiography has been shown to offer superior performance in the assessment of global functional indices, such as stroke volume and ejection fraction, over conventional 2D echo. With this in mind, we present a novel method for tracking the left ventricle (LV) in three-dimensional ultrasound data using a global affine motion model. In order to have a valid region for the underlying assumption of nearly homogeneous motion patterns, we introduce an anatomical region of interest which constrains the global affine motion estimation to a neighborhood around the endocardial surface. This is shown to substantially increase the tracking accuracy and robustness, while simultaneously reducing the required computation time. The proposed anatomical formulation of the optical flow problem is compared with a state-of-the-art real-time tracker and provides competitive performance in the estimation of relevant cardiac volumetric indices used in clinical practice.

Keywords

Global cardiac function affine optical flow 3D ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorosz, J., Lezotte, D., Weitzenkamp, D., Allen, L., Salcedo, E.: Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: A systematic review and meta-analysis. Journal of The American College Of Cardiology 59(20), 1799–1808 (2012)CrossRefGoogle Scholar
  2. 2.
    Muraru, D., Badano, L., Piccoli, G., Gianfagna, P., Del Mestre, L., Ermacora, D., Proclemer, A.: Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. European Journal of Echocardiography 11(4), 359–368 (2010)CrossRefGoogle Scholar
  3. 3.
    Orderud, F., Rabben, S.: Real-time 3D segmentation of the left ventricle using deformable subdivision surfaces. In: Proceedings of IEEE CVPR 2008, pp. 1–8 (2008)Google Scholar
  4. 4.
    Leung, K., van Stralen, M., van Burken, G., de Jong, N., Bosch, J.: Automatic active appearance model segmentation of 3D echocardiograms. In: Proceedings of IEEE ISBI 2010, pp. 320–323 (2010)Google Scholar
  5. 5.
    Leung, E., Danilouchkine, M., van Stralen, M., de Jong, N., van der Steen, A., Bosch, J.: Left ventricular border tracking using cardiac motion models and optical flow. Ultrasound in Medicine & Biology 37(4), 605–616 (2011)CrossRefGoogle Scholar
  6. 6.
    Yang, L., Georgescu, B., Zheng, Y., Wang, Y., Meer, P., Comaniciu, D.: Prediction based collaborative trackers (PCT): A robust and accurate approach toward 3D medical object tracking. IEEE Transactions on Medical Imaging 30(11), 1921–1932 (2011)CrossRefGoogle Scholar
  7. 7.
    Barbosa, D., Bernard, O., Heyde, B., Dietenbeck, T., Houle, H., Friboulet, D., D’hooge, J.: B-spline explicit active tracking of surfaces (BEATS): Application to real-time 3D segmentation and tracking of the left ventricle in 3D echocardiography. In: Proceedings of IEEE IUS (2012) (in press)Google Scholar
  8. 8.
    Jasaityte, R., Heyde, B., D’hooge, J.: Current state of three-dimensional myocardial strain estimation using echocardiography. Journal of the American Society of Echocardiography 26, 15–28 (2013)CrossRefGoogle Scholar
  9. 9.
    Alessandrini, M., Liebgott, H., Barbosa, D., Bernard, O.: Monogenic phase based optical flow computation for myocardial motion analysis in 3D echocardiography. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 159–168. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Heyde, B., Barbosa, D., Claus, P., Maes, F., D’hooge, J.: Three-dimensional cardiac motion estimation based on non-rigid image registration using a novel transformation model adapted to the heart. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 142–150. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Suhling, M., Arigovindan, M., Hunziker, P., Unser, M.: Multiresolution moment filters: theory and applications. IEEE Transactions on Image Processing 13(4), 484–495 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lucas, B., Kanade, T.: An iterative image restoration technique with an application to stereo vision. In: Proc. DARPA Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  13. 13.
    Bouguet, J.: Pyramidal implementation of the affine lucas kanade feature tracker. Technical report, Intel Corporation (1999)Google Scholar
  14. 14.
    Barbosa, D., Dietenbeck, T., Heyde, B., Houle, H., Friboulet, D., D’hooge, J., Bernard, O.: Fast and fully automatic 3d echocardiographic segmentation using b-spline explicit active surfaces: Feasibility study and validation in a clinical setting. Ultrasound in Medicine and Biology 39(1), 89–101 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Barbosa
    • 1
    • 2
    • 3
  • Brecht Heyde
    • 1
  • Thomas Dietenbeck
    • 2
    • 3
  • Denis Friboulet
    • 2
    • 3
  • Jan D’hooge
    • 1
  • Olivier Bernard
    • 2
    • 3
  1. 1.Lab on Cardiovascular Imaging and Dynamics, Department of Cardiovascular SciencesKU LeuvenBelgium
  2. 2.CREATIS, CNRS UMR5220, INSERM U630Université de LyonFrance
  3. 3.INSA-LYONUniversité Lyon 1France

Personalised recommendations