Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion

  • Maria A. Zuluaga
  • M. Jorge Cardoso
  • Marc Modat
  • Sébastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Accurate segmentation of the whole heart from 3D image sequences is an important step in the developement of clinical applications. As manual delineation is a tedious task that is prone to errors and dependant on the expertise of the observer, fully automated segmentation methods are highly desirable. In this work, we present a fully automated method for the segmentation of the whole heart and the great vessels from 3D images. The method is based on a muti-atlas propagation segmentation scheme, that has been proven to be succesful in brain segmentation. Based on a cross correlation metric, our method selects the best atlases for propagation allowing the refinement of the segmentation at each iteration of the propagation. We show that our method allows segmentation from multiple image modalities by validating it on computed tomography angiography (CTA) and magnetic resonance images (MRI). Our results are comparable to state-of-the-art methods on CTA and MRI with average Dice scores of 90.9% and 89.0% for the whole heart when evaluated on a 23 and 8 cases, respectively.


Compute Tomography Angiography Label Image Cardiac Compute Tomography Angiography Compute Tomography Angiography Image Free Form Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)CrossRefGoogle Scholar
  2. 2.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features. IEEE Transactions on Medical Imaging 27(11), 1668–1681 (2008)CrossRefGoogle Scholar
  3. 3.
    Peters, J., Ecabert, O., Meyer, C., Kneser, R., Weese, J.: Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation. Medical Image Analysis 14(1), 70–84 (2010)CrossRefGoogle Scholar
  4. 4.
    Išgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-Atlas-Based SegmentationWith Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans. IEEE Trans. Med. Imag. 28(7), 1000–1010 (2009)CrossRefGoogle Scholar
  5. 5.
    Rikxoort, E.M., Išgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M., Pluim, J.P.W., van Ginneken, B.: Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus. Medical Image Analysis (2010)Google Scholar
  6. 6.
    Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imag. 29(9), 1612–1625 (2010)CrossRefGoogle Scholar
  7. 7.
    Kirişli, H.A., Schaap, M., Klein, S., Papadopoulou, S.L., Bonardi, M., Chen, C.H., Weustink, A.C., Mollet, N.R.A., Vonken, E.P.A., van der Geest, R.J., van Walsum, T., Niessen, W.J.: Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study. Medical Physics 37(12), 6279–6292 (2010)CrossRefGoogle Scholar
  8. 8.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation. IEEE Trans. Med. Imag. 23(70), 903–921 (2004)CrossRefGoogle Scholar
  9. 9.
    Ourselin, S., Roche, S., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image and Vis. Comp. 19(1-2), 25–31 (2001)CrossRefGoogle Scholar
  10. 10.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using freeform deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)CrossRefGoogle Scholar
  11. 11.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Fox, N.C., Hawkes, D.J., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  12. 12.
    Cardoso, M.J., Modat, M., Keihaninejad, S., Cash, D., Ourselin, S.: Multi-STEPS: multi-label similarity and truth estimation for propagated segmentations. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 153–158 (2012)Google Scholar
  13. 13.
    Uribe, S., Tangchaoren, T., Parish, I., Wolf, R., Razavi, R., Greil, G., Schaeffter, T.: Volumetric cardiac quantification by using 3-D dual phase whole-heart MR imaging. Radiology 248, 606–614 (2008)CrossRefGoogle Scholar
  14. 14.
    Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schu, N., Fox, N.C., Ourselin, S.: ADNI: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage 51(4), 1345–1359 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria A. Zuluaga
    • 1
  • M. Jorge Cardoso
    • 1
  • Marc Modat
    • 1
  • Sébastien Ourselin
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College of LondonUK

Personalised recommendations