Initial Experience with a Dynamic Imaging-Derived Immersed Boundary Model of Human Left Ventricle

  • Hao Gao
  • Boyce E. Griffith
  • David Carrick
  • Christie McComb
  • Colin Berry
  • Xiaoyu Luo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Understanding the myocardial biomechanics of the left ventricle (LV) in health and disease is important for improving patient risk stratification and management. Computational models of the heart are able to provide insights into the mechanics of heart function. In this study, we develop a dynamic human LV model using an immersed boundary (IB) method along with a finite element description of myocardial mechanics. Our results show that this computational model is able to simulate LV dynamics from end-diastole to end-systole, and that the model results are in reasonably good agreement with noninvasive in vivo strain measurements obtained by magnetic resonance (MR) imaging.


Radial Strain Immerse Boundary Method Magnetic Resonance Cine Image Deformable Image Registration Myocardial Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allan, A., Gao, H., McComb, C., Berry, C.: Myocardial strain estimated from standard cine MRI closely represents strain estimated from dedicated strain-encoded MRI. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), pp. 2650–2653. IEEE (2011)Google Scholar
  2. 2.
    Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.: On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Eng. 197(25), 2210–2231 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Griffith, B., Luo, X.: Hybrid finite difference/finite element version of the immersed boundary method (submitted)Google Scholar
  4. 4.
    Guccione, J., Moonly, S., Moustakidis, P., Costa, K., Moulton, M., Ratcliffe, M., Pasque, M.: Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann. Thorac. Surg. 71(2), 654–662 (2001)CrossRefGoogle Scholar
  5. 5.
    Holzapfel, G., Ogden, R.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. Math. Phys. Eng. Sci. 367(1902), 3445–3475 (1902)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hunter, P., McCulloch, A., Ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Progr. Biophys. Mol. Biol. 69(2-3), 289–331 (1998)CrossRefGoogle Scholar
  7. 7.
    McQueen, D., Peskin, C.: Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3), 213–236 (1997)CrossRefGoogle Scholar
  8. 8.
    Nash, M., Hunter, P.: Computational mechanics of the heart. J. Elasticity 61(1), 113–141 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Niederer, S., Hunter, P., Smith, N.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90(5), 1697–1722 (2006)CrossRefGoogle Scholar
  10. 10.
    Nordsletten, D., McCormick, M., Kilner, P., Hunter, P., Kay, D., Smith, N.: Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int. J. Numer. Meth. Biomed. Eng. 27(7), 1017–1039 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nordsletten, D., Niederer, S., Nash, M., Hunter, P., Smith, N.: Coupling multi-physics models to cardiac mechanics. Progr. Biophys. Mol. Biol. 104(1), 77–88 (2011)CrossRefGoogle Scholar
  12. 12.
    Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)zbMATHCrossRefGoogle Scholar
  13. 13.
    Potse, M., Dubé, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2435 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Gao, H., Luo, X., Berry, C., Griffith, B., Ogden, R., Wang, T.: Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Meth. Biomed. Eng. (2012)Google Scholar
  15. 15.
    Watanabe, H., Sugiura, S., Kafuku, H., Hisada, T.: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87(3), 2074–2085 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Sun, K., Saloner, D., Wallace, A., Ge, L., Baker, A., Guccione, J., Ratcliffe, M.: The benefit of enhanced contractility in the infarct borderzone: a virtual experiment. Front. Physiol. 3 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hao Gao
    • 1
  • Boyce E. Griffith
    • 2
  • David Carrick
    • 3
  • Christie McComb
    • 3
  • Colin Berry
    • 3
  • Xiaoyu Luo
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of GlasgowUK
  2. 2.Leon H. Charney Division of Cardiology, Department of MedicineNew York University School of MedicineUSA
  3. 3.Institute of Cardiovascular and Medical ScienceUniversity of GlasgowUK

Personalised recommendations