Advertisement

High Resolution Extraction of Local Human Cardiac Fibre Orientations

  • François Varray
  • Lihui Wang
  • Laurent Fanton
  • Yue-Min Zhu
  • Isabelle E. Magnin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Diffusion tensor magnetic resonance imaging (DTMRI) is usually used to detect the displacement distribution of water molecules in biological structure. However, in post-mortem heart fibre imaging, the low spatial resolution does not allow investigating the cardiac fibre structure at microscopic scale. In this paper, the myocyte arrangement of a human heart is investigated at a high resolution of 3.5 μm using the European Synchrotron Radiation Facility (ESRF). The orientation of the myocytes is then computed and extracted at various depths of the heart sample with a multi-scale approach. The helix arrangement of the fibre is obtained at a higher resolution compared to DTMRI. The results show that the measured elevation angles are in good agreement with knowledge of cardiac muscle anatomy. Such high-resolution cardiac fibre orientation information can be used to validate DTMRI measurements and analyze the evolution of cardiac fibre orientations from microscopic level to macroscopic one.

Keywords

ESRF DTMRI myocytes arrangement cardiac fibre 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frindel, C., Robini, M., Croisille, P., Zhu, Y.: Comparison of regularization methods for human cardiac diffusion tensor MRI. Medical Image Analysis 13, 405–418 (2009)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Zhu, Y., Li, H., Liu, W., Magnin, I.E.: Multiscale modeling and simulation of the cardiac fiber architecture for DMRI. IEEE Transactions on Biomedical Engineering 59(1), 16–19 (2012)CrossRefGoogle Scholar
  3. 3.
    Jouk, P.S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., Usson, Y.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardiothorac. Surg. 31(5), 915–921 (2007)CrossRefGoogle Scholar
  4. 4.
    Wang, L., Zhu, Y.-M., Li, H., Liu, W., Magnin, I.E.: Simulation of diffusion anisotropy in DTI for virtual cardiac fiber structure. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 95–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Lasher, R., Hitchcock, R., Sachse, F.: Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: A novel approach for dye delivery and tissue characterization. IEEE Transactions on Medical Imaging 28(8), 1156–1164 (2009)CrossRefGoogle Scholar
  6. 6.
    Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R., Wilkins, S.W.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of Microscopy 206(1), 33–40 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. I (1982)Google Scholar
  8. 8.
    Lombaert, H., Peyrat, J.M., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Transactions on Medical Imaging 31(7), 1436–1447 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • François Varray
    • 1
    • 2
  • Lihui Wang
    • 1
    • 2
  • Laurent Fanton
    • 1
    • 2
  • Yue-Min Zhu
    • 1
    • 2
  • Isabelle E. Magnin
    • 1
    • 2
  1. 1.CNRS UMR 5220, INSERM U1044, INSA-LyonCreatis, Université de LyonFrance
  2. 2.Université Lyon 1VilleurbanneFrance

Personalised recommendations