Understanding Prenatal Brain Sparing by Flow Redistribution Based on a Lumped Model of the Fetal Circulation

  • Patricia Garcia-Canadilla
  • Paula Rudenick
  • Fatima Crispi
  • Monica Cruz-Lemini
  • Georgina Palau
  • Eduard Gratacos
  • Bart H. Bijnens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Intrauterine Growth Restriction due to placental insufficiency leads to cardiac dysfunction in utero which can persist postnatally. Brain sparing by flow redistribution is an adaptive mechanism used by the restricted fetus to ensure delivery of oxygenated blood to the brain. The quantification of reversed flow in the aortic isthmus is used in clinical practice to detect signs of brain sparing. Two parameters are used to quantify reversed flow: pulsatility index and isthmic flow index. We developed a simplified 0-D lumped model of the fetal circulation to simulate brain-sparing for better understanding this compensatory mechanism and its influence on the mentioned parameters. We were able to reproduce the clinical phenomenon and to quantify the effect of brain sparing on pulsatility and isthmic flow indexes. Therefore, our model seems to be a good approximation of the fetal circulation and offers potential to study hemodynamic changes in intrauterine growth restricted fetuses.


Peripheral Resistance Pulsatility Index Blood Velocity Arterial Segment Intrauterine Growth Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, D.J.: Fetal origins of coronary heart disease. BMJ 311, 171–174 (1995)CrossRefGoogle Scholar
  2. 2.
    Tintu, A., et al.: Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS ONE 4, e5155 (2009)Google Scholar
  3. 3.
    Crispi, F., et al.: Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 92, 62–67 (2010)Google Scholar
  4. 4.
    Eixarch, E., et al.: Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet. Gynecol. 32(7), 894–899 (2008)CrossRefGoogle Scholar
  5. 5.
    Fouron, J.-C., et al.: The relationship between an aortic isthmus blood flow velocity index and the postnatal neurodevelopmental status of fetuses with placental circulatory insufficiency. Am. J. Obstet. Gynecol. 192, 497–503 (2005)CrossRefGoogle Scholar
  6. 6.
    Mäkikallio, et al.: Retrograde net blood flow in the aortic isthmus in relation to human fetal arterial and venous circulations. Ultrasound Obstet. Gynecol. 121(22), 2427–2436 (2010)Google Scholar
  7. 7.
    Arts, T., et al.: Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol. Heart Circ. Physiol. 288, H1943 – H1954 (2005)Google Scholar
  8. 8.
    Guettouche, A., et al.: Optimization and Resolution Algorithm of the Human Fetal Blood Circulation Model. Mathl. Comput. Modelling 18(9), 1–8 (1993)zbMATHCrossRefGoogle Scholar
  9. 9.
    Myers, L.J., et al.: A transmission line model of the human foetal circulatory system. Medical Engineering & Physics 24, 285–294 (2002)CrossRefGoogle Scholar
  10. 10.
    VD Wijngaard, J., et al.: Abnormal arterial flows by a distributed model of the fetal circulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1222–R1233 (2006)Google Scholar
  11. 11.
    Szpinda, M.: Length growth of the various aortic segments in human foetuses. Folia Morphol. (Warsz) 67(4), 245–250 (2008)Google Scholar
  12. 12.
    Szpinda, M.: Morphometric study of the ascending aorta in human fetuses. Ann. Anat. 189(5), 465–472 (2007)CrossRefGoogle Scholar
  13. 13.
    Szpinda, M., et al.: Digital-image analysis of the left common carotid artery in human foetuses. Folia. Morphol (Warsz) 67(3), 186–192 (2008)Google Scholar
  14. 14.
    Szpinda, M., et al.: Morphometric study of the ductus arteriosus during human development. Ann. Anat. 189(1), 47–52 (2007)CrossRefGoogle Scholar
  15. 15.
    Szpinda, M.: The normal growth of the thoracic aorta in human foetuses. Folia. Morphol (Warsz) 66(2), 131–137 (2007)Google Scholar
  16. 16.
    Milisic, V., et al.: Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM-Mathematical Modelling and Numerical Analysis 36, 613–632 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Qucs project: Quite Universal Circuit Simulator,
  18. 18.
    Seed, M., et al.: Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J. Cardiovasc. Magn. Reson. 14, 79 (2012)CrossRefGoogle Scholar
  19. 19.
    Kiserud, T.: Physiology of the fetal circulation. Seminars in Fetal & Neonatal Medicine 10, 493–503 (2005)CrossRefGoogle Scholar
  20. 20.
    Struijk, P.C., et al.: Blood pressure estimation in the human fetal descending aorta. Ultrasound Obstet. Gynecol. 32, 673–681 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patricia Garcia-Canadilla
    • 1
    • 2
  • Paula Rudenick
    • 3
  • Fatima Crispi
    • 1
    • 4
  • Monica Cruz-Lemini
    • 1
  • Georgina Palau
    • 2
  • Eduard Gratacos
    • 1
    • 4
  • Bart H. Bijnens
    • 2
    • 5
  1. 1.Fetal and Perinatal Medicine Research GroupInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  2. 2.Physense, N-RASUniversitat Pompeu FabraBarcelonaSpain
  3. 3.University Hospital and Research Institute Vall d’Hebron, Universitat Autonoma de BarcelonaBarcelonaSpain
  4. 4.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations