Effects of Anodal Cardiac Stimulation on Vm and \(Ca_i^{2+}\) Distributions: A Bidomain Study

  • Piero Colli-Franzone
  • Luca F. Pavarino
  • Simone Scacchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


The aim of this work is to study make and break excitation mechanisms elicited by anodal pulses at different coupling intervals using 2D and 3D anisotropic Bidomain simulations. Two different S1-S2 stimulation protocols are considered, one with the S2 pulse delivered at the same location of the S1 pulse and the other at a distant location. Anodal strength-interval (S-I) curves are computed for both S1-S2 protocols showing results consistent with experimental S-I curves, both in terms of stimulus threshold amplitude and depth of the anodal dip during the break phase. The intracellular calcium concentration (\(Ca_i^{2+}\)) distribution presents virtual electrode patterns similar to the transmembrane potential (V m ) distribution. \(Ca_i^{2+}\) displays a weak negative change within the virtual anode area, while a strong positive change is observed within the virtual cathode areas. The results show that with both S1-S2 protocols V m and \(Ca_i^{2+}\) exhibit the same make and break excitation mechanisms, but with a delayed \(Ca_i^{2+}\) response.


virtual electrodes calcium dynamics make and break excitation strength-interval curve Bidomain model 3D parallel simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2012),
  2. 2.
    Colli Franzone, P., Guerri, L., Pennacchio, M., Taccardi, B.: Spreading of excitation in 3-D models of the anisotropic cardiac tissue. II. Effect of geometry and fiber architecture of the ventricular wall. Math. Biosci. 147, 131–171 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Cardiac excitation mechanisms, wavefront dynamics and strength-interval curves predicted by 3D orthotropic bidomain simulations. Math. Biosci. 235(1), 66–84 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dekker, E.: Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ. Res. 27, 811–823 (1970)CrossRefGoogle Scholar
  5. 5.
    Efimov, I.R., Gray, R.A., Roth, B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc. Electrophysiol. 11, 339–353 (2000)CrossRefGoogle Scholar
  6. 6.
    Faber, G.M., Rudy, Y.: Action potential and contractility changes in [Na  + ]i overloaded cardiac myocytes: a simulation study. Biophys. J. 78, 2392–2404 (2000)CrossRefGoogle Scholar
  7. 7.
    Greenstein, J.L., Hinch, R., Winslow, R.L.: Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys. J. 90, 77–91 (2006)CrossRefGoogle Scholar
  8. 8.
    Hayashi, H., Kamanu, S.D., Ono, N., Kawase, A., Chou, C.C., Weiss, J.N., Karagueuzian, H.S., Lin, S.F., Chen, P.S.: Calcium transient dynamics and the mechanisms of ventricular vulnerability to single premature electrical stimulation in Langerdorff-perfused rabbit ventricles. Heart Rhythm 5, 116–123 (2008)CrossRefGoogle Scholar
  9. 9.
    Hayashi, H., Lin, S.F., Joung, B., Karagueuzian, H.S., Weiss, J.N., Chen, P.S.: Virtual electrodes and the induction of fibrillation in Langerdorff-perfused rabbit ventricles: the role of intracellular calcium. Am. J. Physiol. Heart Circ. Physiol. 295, H1422–H1428 (2008)Google Scholar
  10. 10.
    Helm, P.A., Tseng, H.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 54, 850–859 (2005)CrossRefGoogle Scholar
  11. 11.
    Herron, T.J., Lee, P., Jalife, J.: Optical imaging of voltage and calcium in cardiac cells and tissues. Circ. Res. 110, 609–623 (2012)CrossRefGoogle Scholar
  12. 12.
    Hinch, R., Greenstein, J.L., Trankanen, A.J., Xu, L., Winslow, R.L.: A simplified local control model of Calcium-Induced Calcium Release in cardiac ventricular myocytes. Biophys. J. 87, 3723–3736 (2004)CrossRefGoogle Scholar
  13. 13.
    Hooks, D.A., Trew, M.L., Caldwell, B.J., Sands, G.B., LeGrice, I.J., Smaill, B.H.: Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ. Res. 112, e103–e112 (2007)Google Scholar
  14. 14.
    Joung, B., et al.: Intracellular calcium and the mechanism of anodal supernormal excitability in langerdorff-perfused rabbit ventricles. Circ. J. 75, 834–843 (2011)CrossRefGoogle Scholar
  15. 15.
    Mehra, R., Furman, S.: Comparison of cathodal, anodal and bipolar strength-interval curves with temporary and permanent pacing electrodes. British Heart J. 41, 468–476 (1979)CrossRefGoogle Scholar
  16. 16.
    Pennacchio, M., Savarè, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2006)zbMATHCrossRefGoogle Scholar
  17. 17.
    Roth, B.J.: Artifacts, assumptions, and ambiguity: pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation of the heart. Chaos 12(3), 973–981 (2002)CrossRefGoogle Scholar
  18. 18.
    Roth, B.J.: Numerical simulation of cardiac tissue excitation and pacing using bidomain model. The Open Pacing, Electr. & Therapy J. 4, 1–9 (2011)CrossRefGoogle Scholar
  19. 19.
    Scacchi, S.: A hybrid multilevel Schwarz method for the bidomain model. Comput. Meth. Appl. Mech. Eng. 197, 4051–4061 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sidorov, V.Y., Woods, M.C., Baudenbacher, P., Baudenbacher, F.: Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 289, H2602–H2615 (2005)Google Scholar
  21. 21.
    Sidorov, V.Y., Holcomb, M.R., Woods, M.C., Gray, R.A., Wikswo, J.P.: Effects of unipolar stimulation on voltage and calcium distributions in the isolated rabbit heart. Basic Res. Cardiol. 103, 537–551 (2008)CrossRefGoogle Scholar
  22. 22.
    Wikswo, J.P., Roth, B.J.: Virtual electrode theory of pacing. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds.) Cardiac Bioelectric Therapy, ch.4.3, pp. 283–330. Springer Science+Business Media, LLc (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Piero Colli-Franzone
    • 1
  • Luca F. Pavarino
    • 2
  • Simone Scacchi
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Pavia and IMATI-CNR, Istituto di Matematica Applicata e Tecnologie InformatichePaviaItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations