Advertisement

Fast Simulation of Mitral Annuloplasty for Surgical Planning

  • Neil A. Tenenholtz
  • Peter E. Hammer
  • Assunta Fabozzo
  • Eric N. Feins
  • Pedro J. del Nido
  • Robert D. Howe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Mitral valve repair is a complex procedure that requires the ability to predict closed valve shape through the examination of an unpressurized, flaccid valve. These procedures typically include the remodeling of the mitral annulus through the insertion of an annuloplasty ring. While simulations could facilitate the planning of the procedure, traditional finite-element models of mitral annuloplasty are too slow to be clinically feasible and have never been validated in tissue. This work presents a fast method for simulating valve closure post-annuloplasty using a mass-spring tissue model and subject-specific valve geometry. Closed valve shape is predicted in less than one second. The results are validated by implanting an annuloplasty ring in an excised porcine heart and comparing simulated to imaged results. Results indicate that not only can mitral annuloplasty be simulated quickly, but also with sub-millimeter accuracy.

Keywords

Mitral Valve Mitral Annulus Mitral Valve Repair Closed Valve Fast Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonow, R.O., Carabello, B.A., Chatterjee, K., de Leon Jr., A.C., Faxon, D.P., Freed, M.D., Gaasch, W.H., Lytle, B.W., Nishimura, R.A., O’Gara, P.T., O’Rourke, R.A., Otto, C.M., Shah, P.M., Shanewise, J.S.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Journal of the American College of Cardiology 48, e1–e148 (2006)Google Scholar
  2. 2.
    Moss, R., Humphries, K., Gao, M., Thompson, C., Abel, J., Fradet, G., Munt, B.: Outcome of mitral valve repair or replacement: a comparison by propensity score analysis. Circulation 108(90101), II–90 (2003)Google Scholar
  3. 3.
    Gammie, J.S., Sheng, S., Griffith, B.P., Peterson, E.D., Rankin, J.S., O’Brien, S.M., Brown, J.M.: Trends in mitral valve surgery in the united states: Results from the society of thoracic surgeons adult cardiac database. Annals of Thoracic Surgery 87, 1431–1439 (2009)CrossRefGoogle Scholar
  4. 4.
    Gillinov, A.M., Cosgrove, D.M., Blackstone, E.H., Diaz, R., Arnold, J.H., Lytle, B.W., Smedira, N.G., Sabik, J.F., McCarthy, P.M., Loop, F.D.: Durability of mitral valve repair for degenerative disease. Journal of Thoracic and Cardiovascular Surgery 116, 734–743 (1998)CrossRefGoogle Scholar
  5. 5.
    Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulation of cardiac valves: State-of-the-art and future directions. Journal of Biomechanics 46, 217–228 (2013)CrossRefGoogle Scholar
  6. 6.
    Votta, E., Maisano, F., Bolling, S.F., Alfieri, O., Montevecchi, F.M., Redaelli, A.: The geoform disease-specific annuloplasty system: A finite element study. Annals of Thoracic Surgery 84, 92–102 (2007)CrossRefGoogle Scholar
  7. 7.
    Kunzelman, K., Reimink, M., Cochran, R.: Flexible versus rigid ring annuloplasty for mitral valve annular dilation: A finite element analysis. Journal of Heart Valve Disease 7, 108–116 (1998)Google Scholar
  8. 8.
    Wenk, J., Zhang, Z., Cheng, G., Malhotra, D., Acevedo-Bolton, G., Burger, M., Suzuki, T., Saloner, D., Wallace, A., Guccione, J.: First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation. The Annals of Thoracic Surgery 89(5), 1546–1553 (2010)CrossRefGoogle Scholar
  9. 9.
    Bothe, W., Rausch, M.K., Kvitting, J.-P.E, Echtner, D.K., Walther, M., Ingels Jr., N.B., Kuhl, E., Miller, D.C.: How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? Circulation 126, S231–S238 (2012)Google Scholar
  10. 10.
    Bothe, W., Kuhl, E., Kvitting, J.P.E., Rausch, M.K., Goktepe, S., Swanson, J.C., Farahmandnia, S., Ingels Jr., N.B., Miller, D.C.: Rigid, complete annuloplasty rring increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124, S81–S96 (2011)Google Scholar
  11. 11.
    Hammer, P., Vasilyev, N., Perrin, D., Del Nido, P., Howe, R.: Fast image-based model of mitral valve closure for surgical planning. In: MIDAS Journal, Computational Biomechanics for Medicine (MICCAI 2008 Workshop), pp. 15–26 (2008)Google Scholar
  12. 12.
    Voigt, I., Ionasec, R.I., Georgescu, B., Houle, H., Huber, M., Hornegger, J., Comaniciu, D.: Model-driven physiological assessment of the mitral valve from 4d tee. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (2009)Google Scholar
  13. 13.
    Schneider, R.J., Tenenholtz, N.A., Perrin, D.P., Marx, G.R., del Nido, P.J., Howe, R.D.: Patient-specific mitral leaflet segmentation from 4D ultrasound. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 520–527. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Hammer, P., Sacks, M., del Nido, P., Howe, R.: Mass-spring model for simulation of heart valve tissue for mechanical behavior. Annals of Biomedical Engineering 39, 1668–1679 (2011)CrossRefGoogle Scholar
  15. 15.
    May-Newman, K., Yin, F.: Biaxial mechanical behavior of excised porcine mitral valve leaflets. American Journal of Physiology-Heart and Circulatory Physiology 269(4), H1319 (1995)Google Scholar
  16. 16.
    Tenenholtz, N.A., Hammer, P.E., Schneider, R.J., Vasilyev, N.V., Howe, R.D.: On the design of an interactive, patient-specific surgical simulator for mitral valve repair. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1327–1332. IEEE (2011)Google Scholar
  17. 17.
    Hammer, P.E., del Nido, P.J., Howe, R.D.: Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 233–240. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Neil A. Tenenholtz
    • 1
  • Peter E. Hammer
    • 1
    • 2
  • Assunta Fabozzo
    • 2
    • 3
  • Eric N. Feins
    • 2
  • Pedro J. del Nido
    • 2
  • Robert D. Howe
    • 1
  1. 1.Harvard School of Engineering and Applied SciencesCambridgeUSA
  2. 2.Department of Cardiac SurgeryChildren’s HospitalBostonUSA
  3. 3.Division of Cardiac SurgeryUniversity of PadovaPadovaItaly

Personalised recommendations