Atlas Construction for Cardiac Velocity Profiles Segmentation Using a Lumped Computational Model of Circulatory System

  • Vedrana Baličević
  • Hrvoje Kalinić
  • Sven Lončarić
  • Maja Čikeš
  • Georgina Palau-Caballero
  • Catalina Tobon-Gomez
  • Bart H. Bijnens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Heart diseases are a leading cause of death worldwide, making a prompt and accurate diagnosis of cardiac functionality an important task. Recordings of cardiac outflow Doppler velocity profiles, obtained during an echocardiographic examination, are important to quantify hemodynamics and infer cardiac function. For automated segmentation and quantification of these images, a statistical atlas based approach has been proposed previously. Since acquiring a sufficient amount of data for an atlas can be a slow process in clinical practice and possibly result in a small and/or not representative dataset, we present an alternative approach for construction of the statistical atlas. This approach is based on simulating data from virtual patients, using a lumped computational model (CircAdapt), which incorporates knowledge of physiological processes in the human circulatory system under both normal and pathological conditions.


atlas construction image segmentation cardiac outflow velocity profile continuous wave Doppler CircAdapt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Commowick, O., Malandain, G.: Evaluation of atlas construction strategies in the context of radiotherapy planning. In: SA2PM Workshop (From Statistical Atlases to Personalized Models) Held in Conjunction with MICCAI (2006)Google Scholar
  2. 2.
    Gruslys, A., Sawiak, S., Ansorge, R.: 3000 non-rigid medical image registrations overnight on a single PC. In: Nuclear Science Symposium and Medical Imaging Conference 2011 (NSS/MIC), pp. 3073–3080 (2011)Google Scholar
  3. 3.
    Wang, Q., D’Agostino, E., Seghers, D., Maes, F., Vandermeulen, D., Suetens, P.: Construction and validation of statistical brain atlases for atlas-based brain image segmentation. KULeuven, ESAT (2005)Google Scholar
  4. 4.
    Marsland, S., Twining, C.J., Taylor, C.J.: Groupwise Non-rigid Registration Using Polyharmonic Clamped-Plate Splines. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 771–779. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V.: Rueckert. D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. Neuroimage 46(3), 726–738 (2009)CrossRefGoogle Scholar
  6. 6.
    Gubern-Merida, A., Marti, R.: Atlas based segmentation of the prostate in MR images. In: Proc. of MICCAI 2009: Segmentation Challenge Workshop (2009)Google Scholar
  7. 7.
    Tschirren, J., Lauer, R.M., Sonka, M.: Automated analysis of doppler ultrasound velocity flow diagrams. IEEE Trans. Med. Imaging 20, 1422–1425 (2001)CrossRefGoogle Scholar
  8. 8.
    Bermejo, J., Antoranz, J.C., García-Fernández, M.A., Moreno, M.M., Delcán, J.L.: Flow dynamics of stenotic aortic valves assessed by signal processing of doppler spectrograms. Am. J. Cardiol., 611–617 (2000)Google Scholar
  9. 9.
    Kalinić, H., Lončarić, S., Čikes, M., Miličić, D., Bijnens, B.: Image registration and atlas-based segmentation of cardiac outflow velocity profiles. Comput. Methods Programs Biomed. 106(3), 188–200 (2012)CrossRefGoogle Scholar
  10. 10.
    NSR Physiome Project, NSR Physiome Models (2012), (accessed: June 2012)
  11. 11.
    Kerckhoffs, R.C.P., Lumens, J., Vernooy, K., Omens, J.H., Mulligan, L.J., Delhaas, T., Arts, T., McCulloch, A.D., Prinzend, F.W.: Cardiac resynchronization: Insight from experimental and computational models. Prog. Biophys. Mol. Biol. 97(2-3), 543–561 (2008)CrossRefGoogle Scholar
  12. 12.
    Sotiropoulos, F., Borazjani, I.: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47(3), 245–256 (2009)CrossRefGoogle Scholar
  13. 13.
    Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F.: Adaptation to mechanical load determines shape and properties of heart and circulation: the Circ-Adapt model. Am. J. Physiol. Heart. Circ. Physiol. 288(4), 1943–1954 (2005)CrossRefGoogle Scholar
  14. 14.
    Lumens, J., Delhaas, T., Kirn, B., Arts, T.: Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann. Biomed. Eng. 37(11), 2234–2255 (2009)CrossRefGoogle Scholar
  15. 15.
    Palau-Caballero, G., Tobon-Gomez, C., Balicevic, V., Butakoff, C., Loncaric, S., Sitges, M., Bijnens, B.H.: Improving clinical translation of cardiovascular circulatory models through an intuitive graphical user interface to circAdapt, presenting simulation results as clinical images and signals. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 345–354. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Baumgartner, H., Hung, J., Bermejo, J., Chambers, J.B., Evangelista, A., Griffin, B.P., Iung, B., Otto, C.M., Pellikka, P.A., Quiones, M.: Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur. J. Echocardiogr. 10(1), 1–25 (2009)CrossRefGoogle Scholar
  17. 17.
    Graebel, W.P.: Engineering Fluid Mechanics. Taylor & Francis (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vedrana Baličević
    • 1
  • Hrvoje Kalinić
    • 1
  • Sven Lončarić
    • 1
  • Maja Čikeš
    • 2
  • Georgina Palau-Caballero
    • 3
  • Catalina Tobon-Gomez
    • 3
  • Bart H. Bijnens
    • 3
    • 4
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.Department of Cardiovascular DiseasesUniversity of Zagreb School of MedicineCroatia
  3. 3.PhySense, N-RASUniversitat Pompeu FabraBarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations