Cardiac Microstructure Estimation from Multi-photon Confocal Microscopy Images

  • Babak Ghafaryasl
  • Bart H. Bijnens
  • Erwin van Vliet
  • Fátima Crispi
  • Rubén Cárdenes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Construction of realistic models of the muscle fibers in myocardium is relevant for simulating the electro-mechanical behavior of the heart. Advances in microscopy imaging have improved the potential for visualization of the 3D distribution of myocytes. In this paper, we propose an approach to identify cardiac fibers structures, in multi-photon confocal microscopy images. Our method is based on contrast invariant features such as the multi-scale local phase image, to obtain a tensor representation of the local structure. We show here some results obtained from multi-photon microscopy images acquired in a fetal rabbit heart, where the cardiac microstructure can be extracted from the image in terms of fiber direction as well as fiber compactness. Experiments from phantom data also show a successful application of the proposed methodology.


Local Phase Local Shape Tensor Representation Phantom Data Phase Congruency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, M.J., Plank, G., Burton, R.A.B., Schneider, J.E., Gavaghan, D.J., Grau, V., Kohl, P.: Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. American Journal of Physiology. Heart and Circulatory Physiology 298(2), H699–H718 (2010)Google Scholar
  2. 2.
    Punske, B.B., Taccardi, B., Steadman, B., Ershler, P.R., England, A., Valencik, M.L., McDonald, J.A., Litwin, S.E.: Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts. Journal of Electrocardiology 38(4), 40–44 (2005)CrossRefGoogle Scholar
  3. 3.
    Weiss, D., Seemann, G., Keller, D., Farina, D., Sachse, F., Dossel, O.: Modeling of heterogeneous electrophysiology in the human heart with respect to ECG genesis. In: Computers in Cardiology, pp. 49–52. IEEE (2007)Google Scholar
  4. 4.
    Billet, F., Sermesant, M., Delingette, H., Ayache, N.: Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 376–385. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Chang, H.H., Moura, J.M., Wu, Y.L., Sato, K., Ho, C.: Reconstruction of 3d dense cardiac motion from tagged MR sequences. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 880–883. IEEE (2004)Google Scholar
  6. 6.
    Arts, T., Prinzen, F.W., Snoeckx, L., Rijcken, J.M., Reneman, R.S.: Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study. Biophysical Journal 66(4), 953–961 (1994)CrossRefGoogle Scholar
  7. 7.
    Arts, T., Reneman, R.S., Veenstra, P.C.: A model of the mechanics of the left ventricle. Annals of Biomedical Engineering 7(3), 299–318 (1979)CrossRefGoogle Scholar
  8. 8.
    Bovendeerd, P., Arts, T., Huyghe, J., Van Campen, D., Reneman, R.: Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. Journal of Biomechanics 25(10), 1129–1140 (1992)CrossRefGoogle Scholar
  9. 9.
    Chadwick, R.: Mechanics of the left ventricle. Biophysical Journal 39(3), 279–288 (1982)CrossRefGoogle Scholar
  10. 10.
    Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circulation Research 24(3), 339–347 (1969)CrossRefGoogle Scholar
  11. 11.
    Lekadir, K., Ghafaryasl, B., Muñoz-Moreno, E., Butakoff, C., Hoogendoorn, C., Frangi, A.F.: Predictive modeling of cardiac fiber orientation using the knutsson mapping. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 50–57. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kovesi, P.: Image features from phase congruency. Videre: Journal of Computer Vision Research 1(3), 1–26 (1999)Google Scholar
  13. 13.
    Field, D.J., et al.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12), 2379–2394 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Babak Ghafaryasl
    • 1
  • Bart H. Bijnens
    • 1
    • 3
  • Erwin van Vliet
    • 2
  • Fátima Crispi
    • 2
  • Rubén Cárdenes
    • 1
    • 2
  1. 1.Physense, DTICUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Fetal and Perinatal Medicine Research Group, IDIBAPSHospital Clinic de BarcelonaSpain
  3. 3.ICREABarcelonaSpain

Personalised recommendations