Advertisement

Fusion of Local Activation Time Maps and Image Data to Personalize Anatomical Atrial Models

  • Martin W. Krueger
  • Gunnar Seemann
  • Kawal S. Rhode
  • Frank M. Weber
  • Nick Linton
  • Steven Williams
  • Jaswinder Gill
  • C. Aldo Rinaldi
  • Mark D. O’Neill
  • Reza Razavi
  • Olaf Dössel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Patient-specific computational modeling of the atria can provide a better understanding about mechanisms underlying the arrhythmia and will potentially be used for model-based ablation therapy evaluation and planning. Electrical excitation spreads from the left to the right atrium at discrete locations. The location of the muscular bridges cannot be determined from image data. In the present study, left atrial activation sources were manually identified in local activation time maps of 4 AF patients. This information was used to adjust rule-based placed interatrial bridges in anatomical atrial models of the patients. Sinus rhythm simulations showed a better qualitative agreement to the measured left atrial activation patterns after the adjustment of the bridges. For one patient, the simulated body surface potential (BSP) pattern after the adjustment correlated better to measured BSP maps. The results show that the fusion of intracardiac electrical measurements of early left atrial activation can be used to refine patient atria models with information of the myocardial structure which cannot be imaged. In future, such personalized atrial models may be used to support EP interventions.

Keywords

atrial models patient-specific modeling data fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Go, A.S., Hylek, E.M., Phillips, K.A., et al.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (atria) study. JAMA 285, 2370–2375 (2001)CrossRefGoogle Scholar
  2. 2.
    Calkins, H., Kuck, K.H., Cappato, R., et al.: 2012 hrs/ehra/ecas expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. J. Interv. Card Electrophysiol. 33, 171–257 (2012)CrossRefGoogle Scholar
  3. 3.
    Jacquemet, V., Kappenberger, L., Henriquez, C.S.: Modeling atrial arrhythmias: Impact on clinical diagnosis and therapies. IEEE Rev. Biomed. Eng. 1, 94–114 (2008)CrossRefGoogle Scholar
  4. 4.
    Krueger, M.W., Seemann, G., Rhode, K., et al.: Personalization of atrial anatomy and elelectophysiology as a basis for clinical modeling of radio-frequency-ablation of atrial fibrillation. IEEE Trans. Med. Imag. 32, 73–84 (2013)CrossRefGoogle Scholar
  5. 5.
    Dössel, O., Krueger, M.W., Weber, F.M., et al.: Computational modeling of the human atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50, 773–799 (2012)CrossRefGoogle Scholar
  6. 6.
    Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., et al.: Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electr. 10, 1525–1533 (1999)CrossRefGoogle Scholar
  7. 7.
    Platonov, P.G., Mitrofanova, L., Ivanov, V., et al.: Substrates for intra-atrial and interatrial conduction in the atrial septum: anatomical study on 84 human hearts. Heart Rhythm 5, 1189–1195 (2008)CrossRefGoogle Scholar
  8. 8.
    Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)Google Scholar
  9. 9.
    Seemann, G., Sachse, F.B., Karl, M., et al.: Framework for modular, flexible and efficient solving the cardiac bidomain equation using petsc. Mathematics in Industry 15, 363–369 (2010)CrossRefGoogle Scholar
  10. 10.
    McDowell, K.S., Vadakkumpadan, F., Blake, R., et al.: Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. J. Electrocardiol. (2012)Google Scholar
  11. 11.
    Rhode, K.S., Hill, D.L.G., Edwards, P.J., et al.: Registration and tracking to integrate x-ray and mr images in an xmr facility. IEEE Trans. Med. Imag. 22, 1369–1378 (2003)CrossRefGoogle Scholar
  12. 12.
    Krueger, M.W., et al.: Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 223–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Neher, P., Barschdorf, H., Dries, S., Weber, F.M., Krueger, M.W., Dössel, O., Lorenz, C.: Automatic segmentation of cardiac cts - personalized atrial models augmented with electrophysiological structures. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 80–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Weber, F.M., Luik, A., Schilling, C., et al.: Conduction velocity restitution of the human atrium–an efficient measurement protocol for clinical electrophysiological studies. IEEE Trans. Biomed. Eng. 58, 2648–2655 (2011)CrossRefGoogle Scholar
  15. 15.
    Burdumy, M., Luik, A., Neher, P., et al.: Comparing measured and simulated wave directions in the left atrium - a workflow for model personalization and validation. Biomed. Tech. (Berl.) 57, 79–87 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin W. Krueger
    • 1
  • Gunnar Seemann
    • 1
  • Kawal S. Rhode
    • 2
  • Frank M. Weber
    • 1
    • 3
  • Nick Linton
    • 2
  • Steven Williams
    • 2
  • Jaswinder Gill
    • 2
  • C. Aldo Rinaldi
    • 2
  • Mark D. O’Neill
    • 2
  • Reza Razavi
    • 2
  • Olaf Dössel
    • 1
  1. 1.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)Germany
  2. 2.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonUnited Kingdom
  3. 3.Philips Research EuropeHamburgGermany

Personalised recommendations