Evaluating Local Feature Detectors in Salient Region Detection

  • Teemu Kinnunen
  • Mari Laine-Hernandez
  • Pirkko Oittinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


In this work, we study local feature extraction methods and evaluate their performance in detecting local features from the salient regions of images. In order to measure the detectors’ performance, we compared the detected regions to gaze fixations obtained from the eye movement recordings of human participants viewing two types of images: natural images (photographs) and abstract/surreal images. The results indicate that all of the six evaluated local feature detectors perform clearly above chance level. The Hessian-Affine detector performs the best and almost reaches the performance level of state-of-the-art saliency detection methods.


  1. 1.
    Akshat, D., Rachit, D., Bernard, G.: Do Humans Fixate on Interest Points? In: Proc. of International Conference on Pattern Recognition. Tsukuba Science City, Japan (2012)Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94(2), 115–147 (1987)CrossRefGoogle Scholar
  4. 4.
    Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 185–207 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall ii: Query expansion revisited. In: Proc. of Computer Vision and Pattern Recognition, pp. 889–896 (2011)Google Scholar
  6. 6.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  7. 7.
    Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: Proc. of Computer Vision and Pattern Recognition (2008)Google Scholar
  8. 8.
    Harding, P., Robertson, N.: A comparison of feature detectors with passive and task-based visual saliency. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 716–725. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Proc. of Neural Information Processing Systems, pp. 545–552. MIT Press (2007)Google Scholar
  10. 10.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)CrossRefGoogle Scholar
  11. 11.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: Proc. of International Conference on Computer Vision (2009)Google Scholar
  12. 12.
    Judd, T., Durand, F.D., Torralba, A.: A Benchmark of Computational Models of Saliency to Predict Human Fixations. Tech. rep. (2012)Google Scholar
  13. 13.
    Laine-Hernandez, M., Kinnunen, T., Kamarainen, J.K., Lensu, L., Kälviäinen, H., Oittinen, P.: Visual Saliency and Categorisation of Abstract Images. In: Proc. of International Conference on Pattern Recognition. Tsukuba Science City, Japan (2012)Google Scholar
  14. 14.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. In: Proc. of British Machine Vision Conference, pp. 384–393 (2002)Google Scholar
  16. 16.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)CrossRefGoogle Scholar
  17. 17.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. of International Conference on Computer Vision, pp. 525–531 (2001)Google Scholar
  18. 18.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)CrossRefGoogle Scholar
  20. 20.
    Viola, P., Jones, M.: Robust real time object detection. International Journal of Computer Vision (2001)Google Scholar
  21. 21.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Teemu Kinnunen
    • 1
  • Mari Laine-Hernandez
    • 1
  • Pirkko Oittinen
    • 1
  1. 1.Department of Media TechnologyAalto UniversityEspooFinland

Personalised recommendations