Advertisement

Airborne Based High Performance Crowd Monitoring for Security Applications

  • Roland Perko
  • Thomas Schnabel
  • Gerald Fritz
  • Alexander Almer
  • Lucas Paletta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

Crowd monitoring in mass events is a highly important technology to support the security of attending persons. Proposed methods based on terrestrial or airborne image/video data often fail in achieving sufficiently accurate results to guarantee a robust service. We present a novel framework for estimating human density and motion from video data based on custom tailored object detection techniques, a regression based density estimate and a total variation based optical flow extraction. From the gathered features we present a detailed accuracy analysis versus ground truth information. In addition, all information is projected into world coordinates to enable a direct integration with existing geo-information systems. The resulting human counts demonstrate a mean error of 4% to 9% and thus represent a most efficient measure that can be robustly applied in security critical services.

Keywords

Airborne crowd monitoring human density and motion geo-referencing 

References

  1. 1.
    Helbing, D., Johansson, A., Al-Abideen, H.: Dynamics of crowd disasters: An empirical study. Physical Review E 75, 046109 (2007)CrossRefGoogle Scholar
  2. 2.
    Chan, A.B., Liang, Z.-S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: Counting people without people models or tracking. In: CVPR, pp. 1–7 (June 2008)Google Scholar
  3. 3.
    Butenuth, M., Burkert, F., Schmidt, F., Hinz, S., Hartmann, D., Kneidl, A., Borrmann, A., Sirmaçek, B.: Integrating pedestrian simulation tracking and event detection for crowd analysis. In: ICCV Workshops, pp. 150–157 (November 2011)Google Scholar
  4. 4.
    Sirmaçek, B., Reinartz, P.: Automatic crowd density and motion analysis in airborne image sequences based on a probabilistic framework. In: ICCV Workshops, pp. 898–905 (November 2011)Google Scholar
  5. 5.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2009 (VOC 2009) Results, http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
  6. 6.
    Kong, D., Gray, D., Tao, H.: A viewpoint invariant approach for crowd counting. In: ICPR, vol. 3, pp. 1187–1190 (December 2006)Google Scholar
  7. 7.
    Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. (23), pp. 1324–1332 (2010)Google Scholar
  8. 8.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Kraus, K., Harley, I.A.: Photogrammetry: Geometry from Images and Laser Scans, 2nd edn., vol. 1. de Gruyter Textbook (2007)Google Scholar
  10. 10.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org
  13. 13.
    Tikhonov, A., Arsenin, V.Y.: Solutions of Ill Posed Problems. WH Winston, Washington, DC (1977)zbMATHGoogle Scholar
  14. 14.
    Sharp, T.: Implementing decision trees and forests on a GPU. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 595–608. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. I, pp. 511–518 (December 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roland Perko
    • 1
  • Thomas Schnabel
    • 1
  • Gerald Fritz
    • 1
  • Alexander Almer
    • 1
  • Lucas Paletta
    • 1
  1. 1.JOANNEUM RESEARCH Forschungsgesellschaft mbH, DIGITAL - Institute for Information and Communication Technologies, Remote Sensing and GeoinformationGrazAustria

Personalised recommendations