Advertisement

Classification of RGB-D and Motion Capture Sequences Using Extreme Learning Machine

  • Xi Chen
  • Markus Koskela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

In this paper we present a robust motion recognition framework for both motion capture and RGB-D sensor data. We extract four different types of features and apply a temporal difference operation to form the final feature vector for each frame in the motion sequences. The frames are classified with the extreme learning machine, and the final class of an action is obtained by majority voting. We test our framework with both motion capture and Kinect data and compare the results of different features. The experiments show that our approach can accurately classify actions with both sources of data. For 40 actions of motion capture data, we achieve 92.7% classification accuracy with real-time performance.

Keywords

Feature Vector Extreme Learning Machine Motion Capture Dynamic Time Warping Motion Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adistambha, K., Ritz, C., Burnett, I.: Motion classification using dynamic time warping. In: IEEE 10th Workshop on Multimedia Signal Processing (2008)Google Scholar
  2. 2.
    CHALEARN: Gesture challenge, http://www.kaggle.com/c/GestureChallenge
  3. 3.
    CMU: Carnegie-mellon mocap database (2003), http://mocap.cs.cmu.edu
  4. 4.
    Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction for human pose estimation. In: Proc.  CVPR (June 2008)Google Scholar
  5. 5.
    Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)CrossRefGoogle Scholar
  6. 6.
    Kawashima, M., Shimada, A., Taniguchi, R.-I.: Early recognition of gesture patterns using sparse code of self-organizing map. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 116–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Menache, A.: Understanding motion capture for computer animation and video games. Morgan Kaufmann Pub. (2000)Google Scholar
  8. 8.
    Müller, M., Roder, T.: Motion templates for automatic classification and retrieval of motion capture data. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Vienna, Austria, vol. 2, pp. 137–146 (2006)Google Scholar
  9. 9.
    Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation mocap database HDM05. Tech. Rep. CG-2007-2, U. Bonn (June 2007)Google Scholar
  10. 10.
    Raptis, M., Wnuk, K., Soatto, S., et al.: Flexible dictionaries for action classification. In: Proc. MLVMA 2008 (2008)Google Scholar
  11. 11.
    Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of dance gestures from skeleton animation. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–156. ACM (2011)Google Scholar
  12. 12.
    Shimada, A., Taniguchi, R.: Gesture recognition using sparse code of hierarchical som. In: Proc.  ICPR (2008)Google Scholar
  13. 13.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proc. Computer Vision and Pattern Recognition (June 2011)Google Scholar
  14. 14.
    Vieira, A., Lewiner, T., Schwartz, W., Campos, M.: Distance matrices as invariant features for classifying MoCap data. In: 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan (2012)Google Scholar
  15. 15.
    Wang, J., Lee, H.: Recognition of human actions using motion capture data and support vector machine. In: Proc. WCSE, vol. 1, pp. 234–238. IEEE (2009)Google Scholar
  16. 16.
    Xia, L., Chen, C.C., Aggarwal, J.K.: Human detection using depth information by Kinect. In: Workshop on Human Activity Understanding from 3D Data in conjunction with CVPR (HAU3D), Colorado Springs, USA (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xi Chen
    • 1
  • Markus Koskela
    • 1
  1. 1.Department of Information and Computer ScienceAalto University School of ScienceAaltoFinland

Personalised recommendations