Advertisement

Industrial Phase-Shifting Profilometry in Motion

  • P. Schroeder
  • R. Roux
  • J. -M. Favreau
  • M. Perriollat
  • A. Bartoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

Phase-Shift Profilometry (PSP) provides a means for dense high-quality surface scanning. However it imposes a staticity constraint: The scene is required to remain still during the acquisition of multiple images. PSP is also not applicable to dynamic scenes. On the other hand, there exist active stereo techniques which overcome these constraints but impose other limitations, for instance on the surface’s continuity or texture, or by significantly reducing the reconstruction’s resolution.

We present a novel approach to recover reconstructions as dense and almost as accurate as PSP but which allows for a translational object/scene motion during the acquisition of multiple input frames, study its performance in simulations, and present real data results.

Keywords

Root Mean Square Error Synthetic Image Average Root Mean Square Error Dynamic Scene Texture Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. PAMI 27(2), 296–302 (2005)CrossRefGoogle Scholar
  2. 2.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  3. 3.
    Hall-Holt, O., Rusinkiewicz, S.: Stripe boundary codes for real-time structured-light range scanning of moving objects. In: ICCV (2001)Google Scholar
  4. 4.
    Huang, L., Kemao, Q., Pan, B., Asundi, A.K.: Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Eng. 48, 141–148 (2010)CrossRefGoogle Scholar
  5. 5.
    Jongenelen, A., Bailey, D., Payne, A., Dorrington, A., Carnegie, D.: Analysis of errors in tof range imaging with dual-frequency modulation. Instrumentation and Measurement 60(5), 1861–1868 (2011)CrossRefGoogle Scholar
  6. 6.
    Konolige, K.: Projected texture stereo. In: ICRA, pp. 148–155 (2010)Google Scholar
  7. 7.
    Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43(8), 2666–2680 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Smisek, J., Jancosek, M., Pajdla, T.: 3d with kinect. In: ICCV Works, pp. 1154–1160 (2011)Google Scholar
  9. 9.
    Taguchi, Y., Wilburn, B., Zitnick, C.: Stereo reconstruction with mixed pixels using adaptive over-segmentation. In: CVPR (2008)Google Scholar
  10. 10.
    Wang, Y., Liu, K., Hao, Q., Lau, D., Hassebrook, L.G.: Multicamera phase measuring profilometry for accurate depth measurement. In: SPIE 6555 (2007)Google Scholar
  11. 11.
    Wang, Y., Liu, K., Hao, Q., Wang, X., Lau, D., Hassebrook, L.: Robust active stereo vision using kullback-leibler divergence. PAMI 34(3), 548–563 (2012)CrossRefGoogle Scholar
  12. 12.
    Weise, T., Leibe, B., Gool, L.V.: Fast 3d scanning with automatic motion compensation. In: CVPR (2007)Google Scholar
  13. 13.
    Zhang, L., Curless, B., Seitz, S.: Spacetime stereo: shape recovery for dynamic scenes. In: CVPR 2, pp. 367–374 (2003)Google Scholar
  14. 14.
    Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. 3D Data Proc. Visual. and Trans. (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Schroeder
    • 1
  • R. Roux
    • 1
  • J. -M. Favreau
    • 1
  • M. Perriollat
    • 1
  • A. Bartoli
    • 1
  1. 1.ISIT - Image Science for Interventional Techniques, UMR 6284 UdA - CNRS 28Clermont-FerrandFrance

Personalised recommendations