Advertisement

Structure from Motion Estimation with Positional Cues

  • Linus Svärm
  • Magnus Oskarsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

We present a system for structure from motion estimation using additional positioning data such as GPS data. The system incorporates the additional data in the outlier detection, the initial estimates and the final bundle adjustment. The initial solution is based on a novel objective function which is solved using convex optimization. This objective function is also used for outlier detection and removal. The initial solution is then refined based on a novel near L 2 minimization of the reprojection error using convex optimization methods. We present results on synthetic and real data, that shows the robustness, accuracy and speed of the proposed method.

Keywords

Motion Estimation Convex Optimization Outlier Detection Camera Position Bundle Adjustment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: Proc. 12th Int. Conf. on Computer Vision, Kyoto, Japan (2009)Google Scholar
  2. 2.
    Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2011)Google Scholar
  3. 3.
    Hartley, R., Schaffalitzky, F.: L  ∞  minimization in geometric reconstruction problems. In: Proc. Conf. Computer Vision and Pattern Recognition, Washington DC, USA, pp. 504–509 (2004)Google Scholar
  4. 4.
    Kahl, F.: Multiple view geometry and the L  ∞ -norm. In: International Conference on Computer Vision, Beijing, China, pp. 1002–1009 (2005)Google Scholar
  5. 5.
    Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. In: International Conference on Computer Vision, Beijing, China, pp. 986–993 (2005)Google Scholar
  6. 6.
    Zach, C., Pollefeys, M.: Practical methods for convex multi-view reconstruction. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 354–367. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. Conf. Computer Vision and Pattern Recognition, Washington DC (2004)Google Scholar
  8. 8.
    Lhuillier, M.: Fusion of gps and structure-from-motion using constrained bundle adjustment. In: CVPR. IEEE Computer Society (2011)Google Scholar
  9. 9.
    Pylvänäinen, T., Fan, L., Lepetit, V.: Revisiting the pnp problem with a gps. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 819–830. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hu, Z., Keiichi, U., Lu, H., Lamosa, F.: Fusion of vision, 3d gyro and gps for camera dynamic registration. In: Proc. International Conference on Pattern Recognition, Cambridge, UK (2004)Google Scholar
  11. 11.
    Strecha, C., Pylvanainen, T., Fua, P.: Dynamic and scalable large scale image reconstruction. In: Proc. Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA (2010)Google Scholar
  12. 12.
    Lothe, P., Bourgeois, S., Dekeyser, F., Royer, E., Dhome, M.: Towards geographical referencing of monocular slam reconstruction using 3d city models:applications to real-time accurate vision based localization. In: CVPR. IEEE Computer Society (2009)Google Scholar
  13. 13.
    Michot, J., Bartoli, A., Gaspard, F.: Bi-objective bundle adjustment with application to multi-sensor slam. In: 3DPVT (2010)Google Scholar
  14. 14.
    Konolige, K., Agrawal, M., Sola, J.: Large scale visual odometry for rough terrain. In: Intl. Symp. on Robotics Research (1996)Google Scholar
  15. 15.
    Strelow, D., Singh, S.: Motion estimation from image and inertial measurements. Int. Journal of Robotics Research 23(12), 1157–1195 (2004)CrossRefGoogle Scholar
  16. 16.
    Govindu, V.M.: Robustness in motion averaging. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 457–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Zach, C., Klopschitz, M., Pollefeys, M.: Disambiguating visual relations using loop constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1426–1433 (June 2010)Google Scholar
  18. 18.
    Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: CVPR. IEEE Computer Society (2007)Google Scholar
  19. 19.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)Google Scholar
  20. 20.
    Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averaging using the weiszfeld algorithm. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3041–3048 (June 2011)Google Scholar
  21. 21.
    Sim, K., Hartley, R.: Removing outliers using the L  ∞ -norm. In: Proc. Conf. Computer Vision and Pattern Recognition, New York City, USA, pp. 485–492 (2006)Google Scholar
  22. 22.
    Dalalyan, A., Keriven, R.: L1-penalized robust estimation for a class of inverse problems arising in multiview geometry. In: 23d Annual Conference on Neural Information Processing Systems, Vancouver, Canada (December 2009)Google Scholar
  23. 23.
    Aitken, A.: On least squares and linear combination of observations. Proc. R. Soc. Edinb. 55, 42–48 (1934)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Linus Svärm
    • 1
  • Magnus Oskarsson
    • 1
  1. 1.Centre for Mathematical SciencesLund UniversitySweden

Personalised recommendations