Advertisement

Least-Squares Transformations between Point-Sets

  • Kalle Rutanen
  • Germán Gómez-Herrero
  • Sirkka-Liisa Eriksson
  • Karen Egiazarian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

This paper derives formulas for least-squares transformations between point-sets in ℝ d . We consider affine transformations, with optional constraints for linearity, scaling, and orientation. We base the derivations hierarchically on reductions, and use trace manipulation to achieve short derivations. For the unconstrained problems, we provide a new formula which maximizes the orthogonality of the transform matrix.

Keywords

least-squares transformation point-set rank-deficient 

References

  1. 1.
    Horn, B.K.P., Hilden, H.M., Negahdaripour, S.: Closed-Form Solution of Absolute Orientation using Orthonormal Matrices. Journal of the Optical Society America 5(7), 1127–1135 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Green, B.: The orthogonal approximation of an oblique structure in factor analysis. Psychometrika 17(4), 429–440 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)CrossRefGoogle Scholar
  4. 4.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  5. 5.
    Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  6. 6.
    Zhang, L., Choi, S., Park, S.: Robust ICP Registration Using Biunique Correspondence. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 3DIMPVT 2011, Hangzhou, China, May 16-19, pp. 80–85 (2011)Google Scholar
  7. 7.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 131–144 (2000)Google Scholar
  8. 8.
    Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C. Commun. ACM 15(9), 820–826 (1972)CrossRefGoogle Scholar
  9. 9.
    Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Underst. 54(3), 358–367 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Myronenko, A., Song, X.: Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  11. 11.
    Schönemann, P.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vision Appl. 9(5-6), 272–290 (1997)CrossRefGoogle Scholar
  13. 13.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)CrossRefGoogle Scholar
  14. 14.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America 4, 629–642 (1987)Google Scholar
  15. 15.
    Umeyama, S.: Least-Squares Estimation of Transformation Parameters Between Two Point Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar
  16. 16.
    Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Approximate Geometric Pattern Matching Under Rigid Motions. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 371–379 (1999)CrossRefGoogle Scholar
  17. 17.
    van Wamelen, P.B., Li, Z., Iyengar, S.S.: A fast expected time algorithm for the 2-D point pattern matching problem. Pattern Recognition 37(8), 1699–1711 (2004)CrossRefGoogle Scholar
  18. 18.
    Paige, C.C., Saunders, M.A.: Towards a Generalized Singular Value Decomposition. SIAM Journal on Numerical Analysis 18(3), 398–405 (1981)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kalle Rutanen
    • 1
  • Germán Gómez-Herrero
    • 2
  • Sirkka-Liisa Eriksson
    • 1
  • Karen Egiazarian
    • 3
  1. 1.Department of MathematicsTampere University of TechnologyFinland
  2. 2.Netherlands Institute for NeuroscienceNetherlands
  3. 3.Department of Signal ProcessingTampere University of TechnologyFinland

Personalised recommendations