Advertisement

Automatic Optimization of Alignment Parameters for Tomography Datasets

  • Folkert Bleichrodt
  • K. Joost Batenburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

As tomographic imaging is being performed at increasingly smaller scales, the stability of the scanning hardware is of great importance to the quality of the reconstructed image. Instabilities lead to perturbations in the geometrical parameters used in the acquisition of the projections. In particular for electron tomography and high-resolution X-ray tomography, small instabilities in the imaging setup can lead to severe artifacts. We present a novel alignment algorithm for recovering the true geometrical parameters after the object has been scanned, based on measured data. Our algorithm employs an optimization algorithm that combines alignment with reconstruction. We demonstrate that problem-specific design choices made in the implementation are vital to the success of the method. The algorithm is tested in a set of simulation experiments. Our experimental results indicate that the method is capable of aligning tomography datasets with considerably higher accuracy compared to standard cross-correlation methods.

Keywords

alignment parameter estimation tomography 

References

  1. 1.
    Slaney, M., Kak, A.: Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics (1988)Google Scholar
  2. 2.
    Jing, Z., Sachs, F.: Alignment of tomographic projections using an incomplete set of fiducial markers. Ultramicroscopy 35(1), 37–43 (1991)CrossRefGoogle Scholar
  3. 3.
    Szeliski, R.: Image alignment and stitching: A tutorial. Foundations and Trends® in Computer Graphics and Vision 2(1), 1–104 (2006)Google Scholar
  4. 4.
    Viola, P., Wells III, W.: Alignment by maximization of mutual information. International Journal of Computer Vision 24(2), 137–154 (1997)CrossRefGoogle Scholar
  5. 5.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  6. 6.
    Frank, J.: Electron tomography: Three-dimensional imaging with the transmission electron microscope. Plenum Pub. Corp. (1992)Google Scholar
  7. 7.
    Brandt, S., Heikkonen, J., Engelhardt, P.: Automatic alignment of transmission electron microscope tilt series without fiducial markers. Journal of Structural Biology 136(3), 201–213 (2001)CrossRefGoogle Scholar
  8. 8.
    Fitchard, E., Aldridge, J., Reckwerdt, P., Mackie, T.: Registration of synthetic tomographic projection data sets using cross-correlation. Physics in Medicine and Biology 43(6), 1645 (1999)CrossRefGoogle Scholar
  9. 9.
    Houben, L., Bar Sadan, M.: Refinement procedure for the image alignment in high-resolution electron tomography. Ultramicroscopy (2011)Google Scholar
  10. 10.
    Parkinson, D., Knoechel, C., Yang, C., Larabell, C., Le Gros, M.: Automatic alignment and reconstruction of images for soft X-ray tomography. Journal of Structural Biology (2011)Google Scholar
  11. 11.
    Yang, C., Ng, E., Penczek, P.: Unified 3-D structure and projection orientation refinement using quasi-Newton algorithm. Journal of Structural Biology 149(1), 53–64 (2005)CrossRefGoogle Scholar
  12. 12.
    Katsevich, A., Silver, M., Zamyatin, A.: Local tomography and the motion estimation problem. SIAM Journal on Imaging Sciences 4(1), 200–219 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kingston, A., Sakellariou, A., Varslot, T., Myers, G., Sheppard, A.: Reliable automatic alignment of tomographic projection data by passive auto-focus. Medical Physics 38(9), 4934 (2011)CrossRefGoogle Scholar
  14. 14.
    Nocedal, J., Wright, S.: Numerical optimization, 2nd edn. Springer (2006)Google Scholar
  15. 15.
    Hyman, J., Larrouturou, B.: The numerical differentiation of discrete functions using polynomial interpolation methods. Applied Mathematics and Computation 10, 487–506 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chartrand, R.: Numerical differentiation of noisy, nonsmooth data. Los Alamos National Laboratory 13 (2005)Google Scholar
  17. 17.
    Joseph, P.: An improved algorithm for reprojecting rays through pixel images. IEEE Transactions on Medical Imaging 1(3), 192–196 (1982)CrossRefGoogle Scholar
  18. 18.
    Fong, D., Saunders, M.: LSMR: An iterative algorithm for sparse least-squares problems. Arxiv preprint arXiv:1006.0758 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Folkert Bleichrodt
    • 1
  • K. Joost Batenburg
    • 1
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands

Personalised recommendations