Interest Region Description Using Local Binary Pattern of Gradients

  • Sajid Saleem
  • Robert Sablatnig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


Multispectral imaging system maps the contents of a scene to different intensity levels with in spectral images. This imaging process induces spectral variations among the different wavelength band images of the same scene and results in uncorrelated interest region descriptors for cross spectral image matching. This paper presents Local Binary Pattern of Gradients (LBPG) to improve the strength of interest region description under such spectral variations. In LBPG the image gradients are first transformed into binary patterns and then the gradient patterns are used instead of raw gradients for interest region description. We validate the LBPG approach on the spectral images of six different indoor and outdoor scenes. The experimental results confirm better cross spectral image matching performance as compared to SIFT and Center Symmetric Local Binary Patterns.


Image matching multispectral imaging interest regions SIFT and local binary patterns 


  1. 1.
    Brown, M., Su, S.: Multi-spectral sift for scene category recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 177–184 (2011)Google Scholar
  2. 2.
    Chakrabarti, A., Zickler, T.: Statistics of Real-World Hyperspectral Images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–200 (2011)Google Scholar
  3. 3.
    Firmenichy, D., Brown, M., Susstrunk, S.: Multispectral interest points for rgb-nir image registration. In: IEEE International Conference on Image Processing, pp. 181–184 (2011)Google Scholar
  4. 4.
    Hasan, M., Jia, X., Robles-Kelly, A., Zhou, J., Pickering, M.R.: Multi-spectral remote sensing image registration via spatial relationship analysis on sift keypoints. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 1011–1014 (2010)Google Scholar
  5. 5.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognition 42(3), 425–436 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Leykin, A., Hammoud, R.: Pedestrian tracking by fusion of thermal-visible surveillance videos. Machine Vision and Applications 21(4), 587–595 (2010)CrossRefGoogle Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  9. 9.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1), 43–72 (2005)CrossRefGoogle Scholar
  10. 10.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Saleem, S., Bais, A., Sablatnig, R.: A performance evaluation of sift and surf for multispectral image matching. In: International Conference on Image Analysis and Recognition, pp. 166–173 (2012)Google Scholar
  12. 12.
    Vural, M., Yardimci, Y., Temizel, A.: Registration of Multispectral Satellite Images with Orientation-Restricted SIFT. In: Geoscience and Remote Sensing Symposium, vol. 3, pp. 243–246 (2009)Google Scholar
  13. 13.
    Yi, Z., Zhiguo, C., Yang, X.: Multi-spectral remote image registration based on sift. Electronics Letters 44(2), 107–108 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sajid Saleem
    • 1
  • Robert Sablatnig
    • 1
  1. 1.Computer Vision Lab, Institute of Computer Aided AutomationVienna University of TechnologyViennaAustria

Personalised recommendations