Advertisement

Simple-Graphs Fusion in Image Mosaic: Application to Automated Cell Files Identification in Wood Slices

  • Guilhem Brunel
  • Philippe Borianne
  • Gérard Subsol
  • Marc Jaeger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

Results aggregation by disjoint graph merging is potentially a good alternative to image stitching. During the processing of image mosaics, it allows to be free of radiometric and geometric corrections inherent in image fusion. We have studied and developed a generic merging method of disjoint graphs for tracking cell alignments in image mosaics of wood.

Keywords

graphs theory graphs fusion image processing pattern recognition cell segmentation cell organization 

References

  1. 1.
    Lézoray, O., Grady, L.: Image processing and Analysis With Graphs. CRC Press (2012)Google Scholar
  2. 2.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Fusion graphs: merging properties and watersheds. Journal of Mathematical Imaging and Vision 30, 87–104 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baldevbhai, P.J., Anand, R.S.: Review of graph, medical and color Image base Segmentation Techniques. Journal of Electronical and Electronics Engineering 1, 1–19 (2012)Google Scholar
  4. 4.
    Peng, B., Zhang, L., Zhang, D., Yang, J.: Image segmentation by iterated region merging with localized graph cuts. Pattern Recognition 44, 10–11 (2013)Google Scholar
  5. 5.
    Brown, M., Lowe, D.G.: Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision 74, 59–73 (2007)CrossRefGoogle Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Clenti, C.: Architectures flot de données dédiées au traitement d’images par Morphologie Mathématique, Thèse de doctorat en morphologie mathématique. In: ENSMP,vol. (431) (2009)Google Scholar
  8. 8.
    Sun, C., Beare, R., Hilsenstein, V., Jackway, P.: mosaicing of microscope images with global geometric and radiometric corrections. Journal of microscopy 224, 158–165 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: Robust mosaicing with correction of motions distorsions and tissue deformations for In Vivo Fibered Microscopy. Medical Image Analysis 10, 673–692 (2006)CrossRefGoogle Scholar
  10. 10.
    Thévenaz, P., Unser, M.: User-friendly Semiautomated Assembly of Accurate Image Mosaics in Microscopy. Microscopy Research And Technique 70, 135–146 (2007)CrossRefGoogle Scholar
  11. 11.
    Liang, C., Filion, L., Cournoyer, L.: Wood structure of biotically and climatically induced light rings in eastern larch (Larix laricina). Canadian Journal of Forest Research 27, 1538–1547 (1997)CrossRefGoogle Scholar
  12. 12.
    Wilson, B.F.: The Growing Tree. The University of Massachusetts Press, Amherst (1970)Google Scholar
  13. 13.
    Gindl, W.: Cell-wall lignin content related to tracheid dimensions in drought-sensitive austrian pine (pinus nigra). Iawa Journal 22, 113–120 (2001)CrossRefGoogle Scholar
  14. 14.
    Brunel, G., Borianne, P., Subsol, G., Jaeger, M., Caraglio, Y.: Automatic characterization of the cell organization in light microscopic images of wood: application to the identification of the cell files. In: Plant Growth Modeling, Simulation, Visualization and Applications, vol. 4, pp. 58–65. IEEE Press (2012) ISBN 978-1-4673-0070-4Google Scholar
  15. 15.
    Kennel, P., Subsol, G., Guéroult, M., Borianne, P.: Automatic identification of cell files in light microscopic images of conifer wood. In: 2nd International Conference on Image Processing Theory Tools and Applications, pp. 98–103 (2010)Google Scholar
  16. 16.
    Sjodahl, M., Oreb, B.: Stitching interferometric measurement data for inspection of large optical components. Optical Engineering 41, 403–408 (2002)CrossRefGoogle Scholar
  17. 17.
    Wyant, J.C., Schmit, J.: Large field of view, high spatial resolution, surface measurements. In: International Conference on Metrology and Properties of Engineering Surfaces, vol. 38, pp. 691–698 (1998)Google Scholar
  18. 18.
    Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEE Transactions on Pattern Analysis and Machine Intelligence 13, 583–598 (1991)CrossRefGoogle Scholar
  19. 19.
    Tremeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. IEEE Transactions on Image Processing 9, 735–744 (2000)CrossRefGoogle Scholar
  20. 20.
    Beucher, S.: Watershed, Hierarchical Segmentation and Waterfall Algorithm. In: Proc. Mathematical Morphology and its Applications to Image Processing, pp. 69–76 (1994)Google Scholar
  21. 21.
    Ladjal, S.: Blur estimation in Natural Images. In: 15e congrès francophone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, pp. 112–124 (2006)Google Scholar
  22. 22.
    Brunel, G., Borianne, P., Subsol, G., Jaeger, M., Caraglio, Y.: Results reliability of the automated identification of cell files in microscopic images of gymnosperms. In: 7th International Conference on Fuctional-Structural Plant Models (2013) (in submission)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guilhem Brunel
    • 1
    • 2
  • Philippe Borianne
    • 1
  • Gérard Subsol
    • 3
  • Marc Jaeger
    • 1
  1. 1.CIRAD - UMR AMAPFrance
  2. 2.Université Montpellier 2France
  3. 3.CNRS – LIRMMFrance

Personalised recommendations