Automated Tracing of Retinal Blood Vessels Using Graphical Models

  • Jaydeep De
  • Tengfei Ma
  • Huiqi Li
  • Manoranjan Dash
  • Cheng Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


As an early indication of diseases including diabetes, hypertension, and retinopathy of prematurity, structural study of retinal vessels becomes increasingly important. These studies have driven the need toward accurate and consistent tracing of retinal blood vessel tree structures from fundus images in an automated manner. In this paper we propose a two-step pipeline: First, the retinal vessels are segmented with the preference of preserving the skeleton network, i.e., retinal segmentation with a high recall. Second, a novel tracing algorithm is developed where the tracing problem is uniquely mapped to an inference problem in probabilistic graphical models. This enables the exploitation of well-developed inference toolkit in graphical models. The competitive performance of our method is verified on publicly available datasets comparing to the state-of-the-arts.


Segmentation Result Retinal Vessel Fundus Image Probabilistic Graphical Model Vessel Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sun, C., Wang, J., Mackey, D., Wong, T.: Retinal vascular caliber: Systemic, environmental, and genetic associations. Survey of Ophthalmology 54(1), 74–95 (2009)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Liew, G., Klein, R., Rochtchina, E., Knudtson, M., Klein, B., Wong, T., Burlutsky, G., Mitchell, P.: Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. European Heart Journal 28(16), 1984–1992 (2007)CrossRefGoogle Scholar
  3. 3.
    Martinez-Perez, M., Hughes, A., Stanton, A.H., Thom, S., Chapman, N., Bharath, A., Parker, K.: Retinal vascular tree morphology: a semi-automatic quantification. IEEE Trans. Biomed. Eng. 49(8), 912–917 (2002)CrossRefGoogle Scholar
  4. 4.
    King, L., Stanton, A., Sever, P., Thom, S., Hughes, A.: Arteriolar length-diameter (l:d) ratio: a geometric parameter of the retinal vasculature diagnostic of hypertension. J. Hum. Hypertens. 10(6), 417–424 (1996)Google Scholar
  5. 5.
    Mendonca, A., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  6. 6.
    Garg, S., Sivaswamy, J., Chandra, S.: Unsupervised curvature-based retinal vessel segmentation. In: International Symposium on Biomedical Imaging, pp. 1200–1213 (2007)Google Scholar
  7. 7.
    Espona, L., Carreira, M., Penedo, M., Ortega, M.: Retinal vessel tree segmentation using a deformable contour model. In: International Conference on Pattern Recognition (2008)Google Scholar
  8. 8.
    Martinez-Perez, M., Hughes, A., Thom, S., Bharath, A., Parker, K.: Segmentation of blood vessels from red-free and uorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
  9. 9.
    Soares, J., Leandro, J., Cesar, R., Jelinek, H., Cree, M.: Retinal vessel segmentation using the 2d gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2007)CrossRefGoogle Scholar
  10. 10.
    Marin, D., Aquino, A., Gegundez-Arias, M., Brav, J.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag. 30(1), 146–158 (2011)CrossRefGoogle Scholar
  11. 11.
    Bankhead, P., Scholfield, C., McGeown, J., Curtis, T.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7(3), e32435 (2012)Google Scholar
  12. 12.
    Wang, L., Bhalerao, A.: Model based segmentation for retinal fundus images. In: Scandinavian Conference on Image Analysis, pp. 422–429 (2003)Google Scholar
  13. 13.
    Xu, X., Niemeijer, M., Song, Q., Sonka, M., Garvin, M., Reinhardt, J., Abrãmoff, M.: Vessel boundary delineation on fundus images using graph-based approach, pp. 1184–1191 (2011)Google Scholar
  14. 14.
    Can, A., Shen, H., Turner, J., Tanenbaum, H., Roysam, B., Roysam, B.: Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms, pp. 125–138 (1999)Google Scholar
  15. 15.
    Grisan, E., Pesce, A., Giani, A., Foracchia, M., Ruggeri, A.: A new tracking system for the robust extraction of retinal vessel structure. IEEE Engineering in Medicine and Biology Society 1, 1620–1623 (2004)Google Scholar
  16. 16.
    Bekkers, E., Duits, R., Romeny, B., Berendschot, T.: A new retinal vessel tracking method based on orientation scores. CoRR abs/1212.3530 (2012)Google Scholar
  17. 17.
    Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical Imaging 28(9), 1488–1497 (2009)CrossRefGoogle Scholar
  18. 18.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)Google Scholar
  19. 19.
    Gamarnik, D., Katz, D.: Correlation decay and deterministic fptas for counting colorings of a graph. J. Discrete Algorithms 12, 29–47 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Gamarnik, D., Goldberg, D., Weber, T.: Correlation decay in random decision networks. CoRR abs/0912.0338 (2009)Google Scholar
  21. 21.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  22. 22.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag. 26(10), 1357–1365 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jaydeep De
    • 1
    • 2
  • Tengfei Ma
    • 5
  • Huiqi Li
    • 4
  • Manoranjan Dash
    • 2
  • Cheng Li
    • 1
    • 3
  1. 1.Bioinformatics Institute (BII)A*STARSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingapore
  3. 3.School of ComputingNational University of SingaporeSingapore
  4. 4.Beijing Institute of TechnologyChina
  5. 5.Univeristy of TokyoJapan

Personalised recommendations