A Local Image Descriptor Robust to Illumination Changes

  • Sebastian Zambanini
  • Martin Kampel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

In this paper we address the problem of building a local image descriptor that is insensitive to the complex appearance changes induced by illumination variations on non-flat objects. The presented descriptor is based on multi-scale and multi-oriented even Gabor filters and constructed in such a way that typical effects of illumination variations like changes of edge polarity or spatially varying brightness changes are taken into account for illumination insensitivity. For evaluation, a dataset of textured as well as textureless objects is used which introduces a greater challenge towards evaluating the robustness against illumination changes than conventional datasets used in the past. The experiments finally show the superiority of our descriptor compared to existing ones under illumination changes.

Keywords

Virtual World Local Binary Pattern Area Under Curve Image Patch Gabor Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: SIGGRAPH, pp. 835–846. ACM, New York (2006)Google Scholar
  2. 2.
    Zhang, J., Marszaek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV 73, 213–238 (2007)CrossRefGoogle Scholar
  3. 3.
    Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. PAMI 33(1), 43–57 (2011)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to wide-baseline stereo. PAMI 32(5), 815–830 (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: Wld: a robust local image descriptor. PAMI 32(9), 1705–1720 (2010)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Fan, B., Wu, F., Hu, Z.: Rotationally invariant descriptors using intensity order pooling. PAMI 34(10), 2031–2045 (2012)CrossRefGoogle Scholar
  9. 9.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). CVIU 110(3), 346–359 (2008)Google Scholar
  10. 10.
    Larsen, A.B.L., Darkner, S., Dahl, A.L., Pedersen, K.S.: Jet-based local image descriptors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 638–650. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognition 42(3), 425–436 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Gupta, R., Patil, H., Mittal, A.: Robust order-based methods for feature description. In: CVPR, pp. 334–341 (2010)Google Scholar
  13. 13.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: ICCV, pp. 603–610 (2011)Google Scholar
  14. 14.
    Tang, F., Lim, S., Chang, N., Tao, H.: A novel feature descriptor invariant to complex brightness changes. In: CVPR, pp. 2631–2638 (2009)Google Scholar
  15. 15.
    Kobayashi, T., Otsu, N.: Image feature extraction using gradient local auto-correlations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 346–358. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: CVPR, pp. 510–517 (2012)Google Scholar
  17. 17.
    Osadchy, M., Jacobs, D., Lindenbaum, M.: Surface dependent representations for illumination insensitive image comparison. PAMI 29(1), 98–111 (2007)CrossRefGoogle Scholar
  18. 18.
    Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2, 1160–1169 (1985)CrossRefGoogle Scholar
  19. 19.
    Geusebroek, J., Burghouts, G., Smeulders, A.: The amsterdam library of object images. IJCV 61(1), 103–112 (2005)CrossRefGoogle Scholar
  20. 20.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. IJCV 73(3), 263–284 (2007)CrossRefGoogle Scholar
  21. 21.
    Van De Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. PAMI 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  22. 22.
    Kamarainen, J., Kyrki, V., Kalviainen, H.: Invariance properties of gabor filter-based features-overview and applications. TIP 15(5), 1088–1099 (2006)Google Scholar
  23. 23.
    Ahonen, T., Pietikäinen, M.: Image description using joint distribution of filter bank responses. PRL 30(4), 368–376 (2009)CrossRefGoogle Scholar
  24. 24.
    Kyrki, V., Kamarainen, J., Kälviäinen, H.: Simple gabor feature space for invariant object recognition. PRL 25(3), 311–318 (2004)CrossRefGoogle Scholar
  25. 25.
    Kaneva, B., Torralba, A., Freeman, W.: Evaluation of image features using a photorealistic virtual world. In: ICCV, pp. 2282–2289 (2011)Google Scholar
  26. 26.
    Chen, H., Belhumeur, P., Jacobs, D.: In search of illumination invariants. In: CVPR, pp. 254–261 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Zambanini
    • 1
  • Martin Kampel
    • 1
  1. 1.Computer Vision LabVienna University of TechnologyAustria

Personalised recommendations