Constructing Local Binary Pattern Statistics by Soft Voting

  • Juha Ylioinas
  • Xiaopeng Hong
  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


In this paper we propose a novel method for constructing Local Binary Pattern (LBP) statistics for image appearance description. The method is inspired by the kernel density estimation designed for estimating the underlying probability function of a random variable. An essential part of the proposed method is the use of Hamming distance. Compared to the standard LBP histogram statistics where one labeled pixel always contributes to one bin of the histogram, the proposed method exploits a kernel-like similarity function to determine weighted votes contributing several possible pattern types in the statistic. As a result, the method yields a more reliable estimate of the underlying LBP distribution of the given image. In overall, the method is easy to implement and outperforms the standard LBP histogram description in texture classification and in biometrics-related face verification. We demonstrate that the method is extremely potential in problems where the number of pixels is limited. This makes the method very promising, for example, in low-resolution image description and the description of interest regions. Another interesting property of the proposed method is that it can be easily integrated with many existing LBP variants that use label statistics as descriptors.


  1. 1.
    Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE TPAMI 33(10), 1978–1990 (2011)CrossRefGoogle Scholar
  2. 2.
    Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer (2011)Google Scholar
  3. 3.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  4. 4.
    Ahonen, T., Pietikäinen, M.: Soft histograms for local binary patterns. In: Proc. Finnish Signal Processing Symposium (2007)Google Scholar
  5. 5.
    Ahonen, T., Pietikäinen, M.: Pixelwise local binary pattern models of faces using kernel density estimation. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 52–61. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Yang, H., Wang, Y.: A LBP-based face recognition method with hamming distance constraint. Image and Graphics. In: Fourth International Conference on Image and Graphics, ICIG 2007, pp. 645–649 (2007)Google Scholar
  7. 7.
    Ylioinas, J., Hadid, A., Guo, Y., Pietikäinen, M.: Efficient image appearance description using dense sampling based local binary patterns. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 375–388. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Huang, G., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A database for studying face recognition in unconstrained environments. UMass Amherst Technical Report 07-49 (October 2007)Google Scholar
  9. 9.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE TIP 19(6), 1657–1663 (2010)Google Scholar
  10. 10.
    Bishop, C.M.: Pattern recognition and machine learning. Springer (2006)Google Scholar
  11. 11.
    Aitchison, J., Aitken, C.: Multivariate binary discrimination by the kernel method. Biometrika 63(3), 413–420 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1–34 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juha Ylioinas
    • 1
  • Xiaopeng Hong
    • 1
  • Matti Pietikäinen
    • 1
  1. 1.Center for Machine Vision ResearchUniversity of OuluFinland

Personalised recommendations