Forest Stand Delineation Using a Hybrid Segmentation Approach Based on Airborne Laser Scanning Data

  • Zhengzhe Wu
  • Ville Heikkinen
  • Markku Hauta-Kasari
  • Jussi Parkkinen
  • Timo Tokola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


Forest stand delineation is an important task for forest management. Traditional manual stand delineation based on aerial color-infrared images is a labor intensive process and its results are partially subjective. These images are also highly affected by weather conditions and imaging parameters. In this work, we applied a hybrid segmentation approach on Airborne Laser Scanning (ALS) data to delineate forest stands. The ALS data was firstly pre-processed to extract a three band feature image, containing tree height, density, and species information, respectively. Then the image was segmented by the mean shift algorithm to generate raw stands, which were refined by the Spectral Clustering (SC) algorithm in the following stage. In the SC algorithm, we also estimated the number of stands based on eigengap heuristics. We tested our method on real ALS data acquired at Juuka in Finland, and compared the results with the manually delineated result visually and numerically, as well as results based on previous methods. The experimental results showed that our method worked well for the forest stand delineation based on ALS data, and return better results in most cases when compared to previous methods.


forest stand delineation forest stand segmentation LiDAR ALS spectral clustering mean shift hybrid segmentation 


  1. 1.
    Koivuniemi, J., Korhonen, K.T.: Inventory by compartments. Forest Inventory 10, 271–278 (2006)CrossRefGoogle Scholar
  2. 2.
    Haara, A., Haarala, M.: Tree species classification using semi-automatic delineation of trees on aerial images. Scandinavian Journal of Forest Research 17(6), 556–565 (2002)CrossRefGoogle Scholar
  3. 3.
    Leckie, D.G., Gougeon, F.A., Walsworth, N., Paradine, D.: Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sensing of Environment 85(3), 355–369 (2003)CrossRefGoogle Scholar
  4. 4.
    Mustonen, J., Packalen, P., Kangas, A.: Automatic segmentation of forest stands using a canopy height model and aerial photography. Scandinavian Journal of Forest Research 23(6), 534–545 (2008)CrossRefGoogle Scholar
  5. 5.
    Tokola, T., Vauhkonen, J., Leppänen, V., Pusa, T., Mehtätalo, L., Pitkänen, J.: Applied 3D texture features in ALS based tree species segmentation. In: ISPRS Conf. on GEOBIA 2008 (2008)Google Scholar
  6. 6.
    Leppänen, V., Tokola, T., Maltamo, M., Mehtätalo, L., Pusa, T., Mustonen, J.: Automatic delineation of forest stands from LIDAR data. In: ISPRS Conf. on GEOBIA 2008 (2008)Google Scholar
  7. 7.
    Koch, B., Straub, C., Dees, M., Wang, Y., Weinacker, H.: Airborne laser data for stand delineation and information extraction. Int. J. Remote Sensing 30(4), 935–963 (2009)CrossRefGoogle Scholar
  8. 8.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Transactions on Graphics (TOG) 13(1), 43–72 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Vauhkonen, J., Tokola, T., Packalen, P., Maltamo, M.: Identification of Scandinavian commercial species of individual trees from airborne laser scanning data using alpha shape metrics. Forest Science 55(1), 37–47 (2009)Google Scholar
  10. 10.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  11. 11.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and An Algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)Google Scholar
  12. 12.
    Tao, W., Jin, H., Zhang, Y.: Color image segmentation based on mean shift and normalized cuts. IEEE Trans. SMC B 37(5), 1382–1389 (2007)Google Scholar
  13. 13.
    Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Axelsson, P.: DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing 33, 111–118 (2000)Google Scholar
  15. 15.
    Baatz, M., Schäpe, A.: Multiresolution segmentation - an optimization approach for high quality multi-scale image segmentation. In: Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium, pp. 12–23 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhengzhe Wu
    • 1
  • Ville Heikkinen
    • 1
  • Markku Hauta-Kasari
    • 1
  • Jussi Parkkinen
    • 2
  • Timo Tokola
    • 3
  1. 1.School of ComputingUniversity of Eastern FinlandJoensuuFinland
  2. 2.School of EngineeringMonash UniversitySelangorMalaysia
  3. 3.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations