Skip to main content

Variable-Fidelity and Reduced-Order Models for Aero Data for Loads Predictions

  • Chapter
Computational Flight Testing

Abstract

This paper summarizes recent progress in developing metamodels for efficiently predicting the aerodynamic loads acting on industrial aircraft configurations. We introduce a physics-based approach to reduced-order modeling based on proper orthogonal decomposition of snapshots of the full-order CFD model, and a mathematical approach to variable-fidelity modeling that aims at combining many low-fidelity CFD results with as few high-fidelity CFD results as possible using bridge functions and variants of Kriging and Cokriging. In both cases, the goal is to arrive at a model that can be used as an efficient surrogate to the original high-fidelity or full-order CFD model but with significantly less evaluation time and storage requirements. Both approaches are demonstrated on industrial aircraft configurations at subsonic and transonic flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas-Bayoumi, A., Becker, K.: An industrial view on numerical simulation for aircraft aerodynamic design. Journal of Mathematics in Industry 1(10) (2011), doi:10.1186/2190-5983-1-10

    Google Scholar 

  2. Salas, M.D.: Digital Flight: The Last CFD Aeronautical Grand Challenge. Journal of Scientific Computing 28(2/3), 479–505 (2006), doi:10.1007/s10915-006-9087-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Tinoco, E.N., Bogue, D.R., Kao, T.J., Yu, N.J., Li, P., Ball, D.N.: Progress toward CFD for full flight envelope. The Aeronautical Journal 109(1100), 451–460 (2005)

    Google Scholar 

  4. Klenner, J., Becker, K., Cross, M., Kroll, N.: Future Simulation Concept. In: Proceedings 1st CEAS Conference, Paper D07027256, Berlin, Germany (2007)

    Google Scholar 

  5. Chang, K.J., Haftka, R.T., Giles, G.L., Kao, P.-J.: Sensitivity-based scaling for approximating structural response. Journal of Aircraft 30(2), 283–288 (1993)

    Article  Google Scholar 

  6. Choi, S., Alonso, J.J., Kim, S., Kroo, I., Wintzer, M.: Two-level multi-fidelity design optimization studies for supersonic jets. AIAA Paper 2005-0531 (2005)

    Google Scholar 

  7. Gano, S.E., Renaud, J.E., Martin, J.D., Simpson, T.W.: Update strategies for kriging models for using in variable fidelity optimization, AIAA Paper 2005–2057 (April 2005)

    Google Scholar 

  8. Han, Z.-H., Görtz, S., Hain, R.: A Variable-Fidelity Modeling Method for Aero-Loads Prediction. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, H.-P., Nitsche, W., Schröder, W. (eds.) New Results in Numerical and Experimental Fluid Mechanics VII. NNFM, vol. 112, pp. 17–25. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Han, Z.-H., Görtz, S., Zimmermann, R.: On Improving Efficiency and Accuracy of Variable-Fidelity Modeling in Aero-data for Loads Context. In: Proceedings of CEAS 2009 European Air and Space Conference, Manchester, UK, October 26-29 (2009)

    Google Scholar 

  10. Han, Z.H., Görtz, S., Zimmermann, R.: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Journal of Aerospace Science and Technology (2012) (in press), doi:10.1016/j.ast.2012.01.006

    Google Scholar 

  11. Han, Z.H., Görtz, S.: Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling. AIAA Journal 50(9), 1885–1896 (2012)

    Article  Google Scholar 

  12. Han, Z.H., Zimmermann, R., Görtz, S.: Alternative Co-Kriging Model for Variable-Fidelity Surrogate Modeling. AIAA Journal 50(5) (May 2012)

    Google Scholar 

  13. Lucia, D., Beran, P., Silva, W.: Reduced-order modeling: new approaches for computational physics. Progress in Aerospace Sciences 40(1-2), 51–117 (2004)

    Article  Google Scholar 

  14. Rowley, W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using POD and Galerkin projection. Physica D. Nonlinear Phenomena 189(1-2), 115–129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bui-Thanh, T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics. AIAA Journal 42(8), 1505–1516 (2004)

    Article  Google Scholar 

  16. Holmes, P., Lumley, J., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  17. Ruszczynski, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  18. LeGresley, P.A., Alonson, J.J.: Investigation of Non-Linear Projection for POD Based Reduced Order Models for Aerodynamics. AIAA Paper 2001-0926 (2001)

    Google Scholar 

  19. Zimmermann, R., Görtz, S.: Non Linear Reduced Order Models For Steady Aerodynamics. In: Procedia Computer Science, Proceedings of the International Conference on Computational Science, ICCS 2010, vol. 1(1), pp. 165–174 (May 2010)

    Google Scholar 

  20. Zimmermann, R., Görtz, S.: Non-Linear Reduced Order Models for Steady Turbulent Aerodynamics. The Aeronautical Journal 116(1184), 1079–1100 (2012)

    Google Scholar 

  21. Zimmermann, R.: Towards Best-Practice Guidelines for POD-based Reduced Order Mod-eling of Transonic Flows. In: Proceedings International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (Eurogen 2011), Capua, Italy, September 14-16 (2011)

    Google Scholar 

  22. Mifsud, M., Zimmermann, R., Görtz, S.: A POD-based reduced order modeling approach for the efficient computation of high-lift aerodynamics. In: Proceedings International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (Eurogen 2011), Capua, Italy, September 14-16 (2011)

    Google Scholar 

  23. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA Paper 1997-0167 (1997)

    Google Scholar 

  24. Kennedy, M.C., O’Hagan, A.: Predicting the Output from a Complex Computer Code When Fast Approximations Are Available. Biometrika 87(1), 1–13 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Görtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Görtz, S., Zimmermann, R., Han, ZH. (2013). Variable-Fidelity and Reduced-Order Models for Aero Data for Loads Predictions. In: Kroll, N., Radespiel, R., Burg, J., Sørensen, K. (eds) Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38877-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38877-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38876-7

  • Online ISBN: 978-3-642-38877-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics