Skip to main content

Industrialization of the Automatic Transition Prediction in the DLR TAU Code

  • Chapter
Book cover Computational Flight Testing

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 123))

Abstract

The application of a computational method to predict transition for three-dimensional configurations is presented. The method consists of a coupled program system including a 3D Navier-Stokes solver, a transition prediction module, a boundary-layer code and a stability solver. Focus is placed on the industrialization of the method. For this, approaches to treat different, complex three-dimensional aircraft geometries and to account for limitations of the transition prediction method in an industrial computational environment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crippa, S., Melber-Wilkending, S., Rudnik, R.: DLR Contribution to the First High Lift Prediction Workshop. In: 49th AIAA Aerospace Sciences Meeting, Orlando, AIAA Paper 2011–0938 (2011)

    Google Scholar 

  2. Crippa, S., Krimmelbein, N.: Transitional Flow Computations of the NASA Trapezoidal Wing with the DLR TAU Code. In: 30th AIAA Applied Aerodynamics Conference, New Orleans, AIAA Paper, pp. 2012–2845 (2012)

    Google Scholar 

  3. Krimmelbein, N., Radespiel, R.: Transition prediction for three-dimensional flows using parallel computation. Computers & Fluids 38, 121–136 (2009)

    Article  MATH  Google Scholar 

  4. Krimmelbein, N., Krumbein, A.: Automatic Transition Prediction for Three-Dimensional Configurations with Focus on Industrial Application. Journal of Aircraft 48(6), 1878–1887 (2011)

    Article  Google Scholar 

  5. Krumbein, A., Krimmelbein, N.: Navier-Stokes High-lift Airfoil Computations with Automatic Transition Prediction Using the DLR TAU Code. In: Tropea, C., Jakirlic, S., Heinemann, H.J., Henk, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics VI. NNFM, vol. 96, pp. 210–218. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Krumbein, A.: Automatic Transition Prediction and Application to Three-Dimensional Wing Configurations. Journal of Aircraft 44(1), 119–133 (2007)

    Article  Google Scholar 

  7. Krumbein, A., Krimmelbein, N., Schrauf, G.: Automatic Transition Prediction in a Hybrid Flow Solver - Part 1: Methodology and Sensitivities. Journal of Aircraft 46(4), 1176–1190 (2009)

    Article  Google Scholar 

  8. Mack, L.: Transition prediction and linear stability theory. Laminar-Turbulent transition. AGARD-CP-224 (1977)

    Google Scholar 

  9. Manie, F., Piccin, O., Ray, J.P.: Test Report of the 2D Model M1 in the ONERA F1 Wind Tunnel. GARTEUR AD(AG–08), TP–041 (1989)

    Google Scholar 

  10. Neuhart, D.H., McGinley, C.B.: Free-Stream Turbulence Intensity in the Langley 14- by 22-Foot Subsonic Tunnel. NASA/TP-2004-213247 (2004)

    Google Scholar 

  11. Rumsey, C.L., Slotnick, J.P., Long, M., Stuever, R.A., Wayman, T.R.: Summary of the First AIAA CFD High-Lift Prediction Workshop. Journal of Aircraft 48(6), 2068–2079 (2011)

    Article  Google Scholar 

  12. Schrauf, G.: Transition prediction using different linear stability analysis strategies. In: 12th AIAA Applied Aerodynamics Conference, Colorado Springs, AIAA Paper 1994–1848 (1994)

    Google Scholar 

  13. Schrauf, G.: COCO - A program to compute velocity and temperature profiles for local and nonlocal stability analysis of compressible, conical boundary layers with suction. ZARM Technik Report (1998)

    Google Scholar 

  14. Schrauf, G.: LILO 2.1. User’s Guide and Tutorial. GSSC Technical Report 6, originally issued Sep. 2004, modified for Version 2.1 (2006)

    Google Scholar 

  15. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. In: European Conference on Computational Fluid Dynamics. ECCOMAS CFD 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normann Krimmelbein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krimmelbein, N. (2013). Industrialization of the Automatic Transition Prediction in the DLR TAU Code. In: Kroll, N., Radespiel, R., Burg, J., Sørensen, K. (eds) Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38877-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38877-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38876-7

  • Online ISBN: 978-3-642-38877-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics