Skip to main content

Coupling Strategies for Large Industrial Models

  • Chapter
Computational Flight Testing

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 123))

Abstract

In this article an investigation of possible coupling strategies for large numerical models in fluid-structure interaction is given. The focus is on the development and the assessment of a simplified approach that uses existing and well verified scattered data interpolation methods. The interpolation problem is addressed by a pragmatic partitioning approach of large models. Analysis of the interpolation of deflections between different discretization of the coupling models are performed, together with comparisons of static fluid-structure simulations with measured data of the elastic DLR-F12 wind tunnel model. The loads transfer between CFD mesh and FE model for different partitioning schemes is performed and assessed, finally some considerations for the use of the suggested strategies on large models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckert, A., Wendland, H.: Multivariate Interpolation for Fluid-Structure-Interaction Problems using Radial Basis Functions. AST - Aerospace Science and Technology, Art. No. 5125 (2001)

    Google Scholar 

  2. Schaback, R.: Creating Surfaces from Scattered Data Using Radial Basis Functions. Mathematical Methods for Curves and Surfaces. Vanderbilt University Press (1995) ISBN 8265-1268-2

    Google Scholar 

  3. Gneiting, T.: Radial Positive Definite Functions Generated by Euclid’s Hat. Journal of Multivariate Analysis 69, 88–119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckert, A.: Ein Beitrag zur Strömungs-Struktur-Kopplung für die Berechnung des aeroelastischen Gleichgewichtszustandes. DLR-FB No. 97-42, PhD-Thesis Göttingen (1997) (in German)

    Google Scholar 

  5. Harder, R.L., Desmarais, R.N.: Interpolation Using Surface Splines. AIAA Journal 9(2), 189–191 (1972)

    Google Scholar 

  6. Hounjet, M., Meijer, J.: Evaluation of Elastomechanical and Aerodynamic Data Transfer Methods for Non-planar Configurations in Computational Aeroelastic Analysis. In: Proceedings International Forum on Aeroelasticity and Structural Dynamics, Manchester, UK (1995)

    Google Scholar 

  7. Wendland, H.: Konstruktion und Untersuchung radialer Basisfunktionen mit kompaktem Träger. University of Göttingen, PhD-Thesis (1996) (in German)

    Google Scholar 

  8. Ahrem, R., Beckert, A., Wendland, H.: A New Multivariate Interpolation Method for Large-Scale Spatial Coupling Problems in Aeroelasticity. In: Conference Proceedings to the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Munich (2005)

    Google Scholar 

  9. Wendland, H.: Fast Evaluation of Radial Basis Functions: Methods based on Partition of Unity. In: Chui, X.C.K., Schumaker, L.L., Stoeckler, J. (eds.) Approximation Theory, pp. 473–783. Vanderbilt University Press, Nashville (2002)

    Google Scholar 

  10. Ahrem, R.: Algorithmen zur Kopplung und Interpolation in der Aeroelastik. University of Göttingen, PhD-Thesis (2005) (in German)

    Google Scholar 

  11. Gardner, A.D., et al.: Adaptive load redistribution using mini-TED’s. In: 25th International Congress of the Aeronautical Sciences (ICAS), Hamburg, Germany (2006)

    Google Scholar 

  12. Neumann, J., Nitzsche, J., Voss, R.: Aeroelastic Analysis by Coupled Non-linear Time Domain Simulation. RTO-AVT-154, Specialist’s Meeting on Advanced Aeroelasticity, Loen Norway (2008)

    Google Scholar 

  13. Neumann, J., Ritter, M.: Steady and Unsteady Aeroelastic Simulations of the HIRENASD Wind Tunnel Experiment. In: IFASD - International Forum on Aeroelasticity and Structural Dynamics, Seattle, USA, June 21-24 (2009)

    Google Scholar 

  14. Löser, T., Hübner, A.R.: Influence of Wing Elasticity on Dynamic Derivatives of Transport Aircraft. In: 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, USA, January 4-7 (2010)

    Google Scholar 

  15. Hübner, A.R., Kilian, T., Spiering, F.: Influence of Wing Elasticity on the Experimental and Numerical Determination of Dynamic Derivatives. In: STAB-Symposium, Berlin, Okt (2010)

    Google Scholar 

  16. Gerhold, T., et al.: Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code. AIAA Journal 0167 (1997)

    Google Scholar 

  17. Dwight, R.: An Implicit LU-SGS Scheme for Finite-Volume Discretizations of the Navier-Stokes Equations on Hybrid Grids. DLR-FB-2005-05 (2005) ISSN 1434-8454

    Google Scholar 

  18. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper, No.92-0439 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neumann, J., Krüger, W. (2013). Coupling Strategies for Large Industrial Models. In: Kroll, N., Radespiel, R., Burg, J., Sørensen, K. (eds) Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38877-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38877-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38876-7

  • Online ISBN: 978-3-642-38877-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics