Skip to main content

Construction of Liouvillian Classes of Functions and Liouville’s Theory

  • Chapter
  • First Online:
Topological Galois Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2586 Accesses

Abstract

Some algebraic and differential equations are explicitly solvable. What does this mean? If an explicit solution is presented, the question answers itself. However, in most cases, every attempt to solve an equation explicitly is doomed to failure. We are then tempted to prove that certain equations have no explicit solutions. It is now necessary to define exactly what we mean by explicit solutions (otherwise, it is unclear what we are trying to prove).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If f and g are multivalued functions and ∧ is, say, a binary operation, then fg is a set of multivalued functions. The class defined by a list \(\{f_{1},\mathop{\ldots },f_{n}\}\) of basic functions and a list \(\{\wedge _{1},\mathop{\ldots },\wedge _{m}\}\) of admissible binary operations is, by definition, the minimal set \(\mathcal{C}\) of functions such that all \(f_{i} \in \mathcal{C}\) and \(f \wedge _{j}g \subseteq \mathcal{C}\) whenever \(f,g \in \mathcal{C}\). An obvious modification can be made to include infinite sets of basic functions and admissible functions, such as unary, ternary, etc., operations.

  2. 2.

    A generalized elementary function over a functional differential field K is, by definition, an element of a generalized elementary extension of K.

  3. 3.

    Since P k is irreducible by our assumption, this simply means that DP k is divisible by P k .

  4. 4.

    We use “polar part of the integral” as a single piece of terminology.

  5. 5.

    It suffices to prove that every function \(\varphi: P \rightarrow \mathbb{Q}\) belongs to J 0(P). Indeed, a function \(\varphi: P \rightarrow \mathbb{Q}\) belongs to J 0(P) if and only if the point \(\sum _{a\in P}(k\varphi (a))a\) has finite order in W, where k is the least common multiple of all the values of \(\varphi\).

References

  1. F. Baldassarri, B. Dwork, On second order linear differential equations with algebraic solutions. Am. J. Math. 101, 42–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bronstein, Integration of elementary functions. J. Symbolic Comput. 9, 117–173 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bronstein, Symbolic Integration I: Transcendental Functions. Algorithms and Computation in Mathematics, vol. 1, 2nd edn. (Springer, Berlin/New York, 2010)

    Google Scholar 

  4. N.G. Chebotarev, Theory of Algebraic Functions (URSS, Moscow, 2007)

    Google Scholar 

  5. J.H. Davenport, On the Integration of Algebraic Functions (Springer, Berlin/New York, 1981)

    Book  MATH  Google Scholar 

  6. A.G. Khovanskii, Fewnomials. Translations of Mathematical Monographs, vol. 88 (American Mathematical Society, Providence, 1991)

    Google Scholar 

  7. A.G. Khovanskii, On algebraic functions integrable in finite terms. Funct. Anal. Appl. 49(1) (2015, to appear)

    Google Scholar 

  8. A.G. Khovanskii, O.A. Gelfond, Real Liouville functions. Funkts. Analiz 14, 52–53 (1980); translation in Funct. Anal. Appl. 14, 122–123 (1980)

    Google Scholar 

  9. E.R. Kolchin, Algebraic matrix groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations. Ann. Math. 49, 1–42 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Liouville, Sur la détermination des intégrales dont la valeur est algébrique. J. de l’École Poly. 14, 124–148 (1833)

    Google Scholar 

  11. J. Liouville, Mémoire sur l’intégration d’une classe d’équations différentielles du second ordre en quantités finies explicites. Journal de mathématiques, pures et appliquees IV, 423–456 (1839)

    Google Scholar 

  12. V.V. Prasolov, Non-elemetarity of integrals of some elementary functions. Mat. prosveschenie, Ser. III 126–135 (2003)

    Google Scholar 

  13. R.H. Risch, The solution of the problem of integration in finite terms. Bull. Am. Math. Soc. 76, 605–608 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Ritt, Integration in Finite Terms. Liouville’s Theory of Elementary Methods (Columbia University Press, New York, 1948)

    Google Scholar 

  15. M. Rosenlicht, Liouville’s theorem on functions with elementary integrals. Pac. J. Math. 24, 153–161 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Rosenlicht, On Liouville’s theory elementary of functions. Pac. J. Math. 65, 485–492 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.F. Singer, Liouvillian solutions of nth order homogeneous linear differential equations. Am. J. Math. 103, 661–682 (1981)

    Article  MATH  Google Scholar 

  18. M.F. Singer, Formal solutions of differential equations. J. Symbolic Comput. 10, 59–94 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khovanskii, A. (2014). Construction of Liouvillian Classes of Functions and Liouville’s Theory. In: Topological Galois Theory. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38871-2_1

Download citation

Publish with us

Policies and ethics