Skip to main content

Unsupervised Learning of Functional Network Dynamics in Resting State fMRI

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Abstract

Research in recent years has provided some evidence of temporal non-stationarity of functional connectivity in resting state fMRI. In this paper, we present a novel methodology that can decode connectivity dynamics into a temporal sequence of hidden network “states” for each subject, using a Hidden Markov Modeling (HMM) framework. Each state is characterized by a unique covariance matrix or whole-brain network. Our model generates these covariance matrices from a common but unknown set of sparse basis networks, which capture the range of functional activity co-variations of regions of interest (ROIs). Distinct hidden states arise due to a variation in the strengths of these basis networks. Thus, our generative model combines a HMM framework with sparse basis learning of positive definite matrices. Results on simulated fMRI data show that our method can effectively recover underlying basis networks as well as hidden states. We apply this method on a normative dataset of resting state fMRI scans. Results indicate that the functional activity of a subject at any point during the scan is composed of combinations of overlapping task-positive/negative pairs of networks as revealed by our basis. Distinct hidden temporal states are produced due to a different set of basis networks dominating the covariance pattern in each state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proceedings of the National Academy of Sciences 98(2), 676–682 (2001)

    Article  Google Scholar 

  2. Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., Sonuga-Barke, E.J.S., et al.: Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews 33(3), 279 (2009)

    Article  Google Scholar 

  3. Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1), 81–98 (2010)

    Article  Google Scholar 

  4. Majeed, W., Magnuson, M., Hasenkamp, W., Schwarb, H., Schumacher, E.H., Barsalou, L., Keilholz, S.D.: Spatiotemporal dynamics of low frequency bold fluctuations in rats and humans. Neuroimage 54(2), 1140–1150 (2011)

    Article  Google Scholar 

  5. Hutchison, R.M., Womelsdorf, T., Gati, J.S., Everling, S., Menon, R.S.: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Human Brain Mapping (2012)

    Google Scholar 

  6. Buckner, R.L., Vincent, J.L., et al.: Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37(4), 1091–1096 (2007)

    Article  Google Scholar 

  7. Sra, S., Cherian, A.: Generalized dictionary learning for symmetric positive definite matrices with application to nearest neighbor retrieval. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS (LNAI), vol. 6913, pp. 318–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Sivalingam, R., Boley, D., Morellas, V., Papanikolopoulos, N.: Positive definite dictionary learning for region covariances. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1013–1019. IEEE (2011)

    Google Scholar 

  9. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical Statistics, 164–171 (1970)

    Google Scholar 

  10. Batmanghelich, N.K., Taskar, B., Davatzikos, C.: Generative-discriminative basis learning for medical imaging. IEEE Transactions on Medical Imaging 31(1), 51–69 (2012)

    Article  Google Scholar 

  11. Bishop, C.M., et al.: Pattern recognition and machine learning, vol. 4. Springer, New York (2006)

    MATH  Google Scholar 

  12. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  13. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fmri. Neuroimage 54(2), 875–891 (2011)

    Article  Google Scholar 

  14. Dosenbach, N.U.F., Fair, D.A., Miezin, F.M., Cohen, A.L., et al.: Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences 104(26), 11073 (2007)

    Article  Google Scholar 

  15. Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann, C.F., Jenkinson, M., Andersson, J., Glasser, M.F., et al.: Temporally-independent functional modes of spontaneous brain activity. Proceedings of the National Academy of Sciences 109(8), 3131–3136 (2012)

    Article  Google Scholar 

  16. Faisan, S., Thoraval, L., Armspach, J.P., Heitz, F.: Hidden markov multiple event sequence models: A paradigm for the spatio-temporal analysis of fmri data. Medical Image Analysis 11(1), 1 (2007)

    Article  Google Scholar 

  17. Janoos, F., Machiraju, R., Singh, S., Morocz, I.Á.: Spatio-temporal models of mental processes from fmri. Neuroimage 57(2), 362–377 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C. (2013). Unsupervised Learning of Functional Network Dynamics in Resting State fMRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics