Skip to main content

Hierarchical Discriminative Framework for Detecting Tubular Structures in 3D Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

Detecting tubular structures such as airways or vessels in medical images is important for diagnosis and surgical planning. Many state-of-the-art approaches address this problem by starting from the root and progressing towards thinnest tubular structures usually guided by image filtering techniques. These approaches need to be tailored for each application and can fail in noisy or low-contrast regions. In this work, we address these challenges by a two-layer model which consists of a low-level likelihood measure and a high-level measure verifying tubular branches. The algorithm starts by computing a robust measure of tubular presence using a discriminative classifier at multiple image scales. The measure is then used in an efficient multi-scale shortest path algorithm to generate candidate centerline branches and corresponding radii measurements. Finally, the branches are verified by a learning-based indicator function that discards false candidate branches. The experiments on detecting airways in rotational X-ray volumes show that the technique is robust to noise and correctly finds airways even in the presence of imaging artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbu, A., Bogoni, L., Comaniciu, D.: Hierarchical part-based detection of 3D flexible tubes: Application to CT colonoscopy. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 462–470. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bauer, C., Pock, T., Sorantin, E., Bischof, H., Beichel, R.: Segmentation of interwoven 3D tubular tree structures utilizing shape priors and graph cuts. Med. Image Anal. 14(2), 172–184 (2010)

    Article  Google Scholar 

  3. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vision 92, 192–210 (2011)

    Article  Google Scholar 

  4. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, p. 130. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Graham, M., Gibbs, J., Cornish, D., Higgins, W.: Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy. IEEE T. Med. Imaging 29, 982–997 (2010)

    Article  Google Scholar 

  6. Kumar, S., Hebert, M.: A hierarchical field framework for unified context-based classification. In: Proc. Int. Conf. Comput. Vision (2005)

    Google Scholar 

  7. Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: Design and study of flux-based features for 3D vascular tracking. In: Proc. Int. Symp. Biomed. Imaging (2009)

    Google Scholar 

  8. Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  9. Lo, P., Sporring, J., Ashraf, H., Pedersen, J.J., de Bruijne, M.: Vessel-guided airway tree segmentation: A voxel classification approach. Med. Image Anal. 14(4), 527–538 (2010)

    Article  Google Scholar 

  10. Ochs, R., Goldin, J., Abtin, F., Kim, H., Brown, K., Batra, P., Roback, D., McNitt-Gray, M., Brown, M.: Automated classification of lung bronchovascular anatomy in CT using AdaBoost. Med. Image Anal. 11, 315–324 (2007)

    Article  Google Scholar 

  11. Palágyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdohelyi, B., Hausegger, K.: A sequential 3D thinning algorithm and its medical applications. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 409–415. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Rouchdy, Y., Cohen, L.: A geodesic voting method for the segmentation of tubular tree and centerlines. In: Proc. Int. Symp. on Biomed. Imaging, pp. 979–983 (2011)

    Google Scholar 

  13. Schuh, A., Kaftan, J.N., Tietjen, C., O’Donnell, T.P.: Sparse axes-aligned MFlux. In: Workshop on Comp. and Vis. for (Intra-) Vascular Imaging (2011)

    Google Scholar 

  14. Sofka, M., Zhang, J., Zhou, S., Comaniciu, D.: Multiple object detection by sequential Monte Carlo and hierarchical detection network. In: Proc. Int. Conf. Comput. Vision and Pattern Recogn., San Francisco, CA, June 13-18 (2010)

    Google Scholar 

  15. Steger, T., Hosbach, M.: Navigated bronchoscopy using intraoperative fluoroscopy and preoperative CT. In: Proc. Int. Symp. on Biomed. Imaging, pp. 1220–1223 (2012)

    Google Scholar 

  16. Tu, Z.: Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Proc. Int. Conf. Comput. Vision (2005)

    Google Scholar 

  17. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Machine Intelligence 32, 1744–1757 (2010)

    Article  Google Scholar 

  18. Türetken, E., Benmansour, F., Fua, P.: Automated reconstruction of tree structures using path classifiers and mixed integer programming. In: Proc. Int. Conf. Comput. Vision and Pattern Recogn., pp. 566–573. IEEE (2012)

    Google Scholar 

  19. Wolf, L., Bileschi, S.: A critical view of context. Int. J. Comput. Vision (2006)

    Google Scholar 

  20. Zheng, Y., Loziczonek, M., Georgescu, B., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.: Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. In: Proc. SPIE (2011)

    Google Scholar 

  21. Zhou, J., Chang, S., Metaxas, D., Axel, L.: Vascular structure segmentation and bifurcation detection. In: Proc. Int. Symp. on Biomed. Imaging, pp. 872–875 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breitenreicher, D., Sofka, M., Britzen, S., Zhou, S.K. (2013). Hierarchical Discriminative Framework for Detecting Tubular Structures in 3D Images. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics