Skip to main content

A Methodology to Engineer and Validate Dynamic Multi-level Multi-agent Based Simulations

  • Conference paper
Multi-Agent-Based Simulation XIII (MABS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7838))

Abstract

This article proposes a methodology to model and simulate complex systems, based on IRM4MLS, a generic agent-based meta-model able to deal with multi-level systems. This methodology permits the engineering of dynamic multi-level agent-based models, to represent complex systems over several scales and domains of interest. Its goal is to simulate a phenomenon using dynamically the lightest representation to save computer resources without loss of information. This methodology is based on two mechanisms: (1) the activation or deactivation of agents representing different domain parts of the same phenomenon and (2) the aggregation or disaggregation of agents representing the same phenomenon at different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caillou, P., Gil-Quijano, J.: Simanalyzer: Automated description of groups dynamics in agent-based simulations. In: Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2012 (2012)

    Google Scholar 

  2. Caillou, P., Gil-Quijano, J., Zhou, X.: Automated observation of multi-agent based simulations: a statistical analysis approach. To appear in Studia Informatica Universalis (2013)

    Google Scholar 

  3. Chen, C., Clack, C., Nagl, S.: Identifying multi-level emergent behaviors in agent-directed simulations using complex event type specifications. Simulation 86(1), 41–51 (2010)

    Article  Google Scholar 

  4. Chen, C., Nagl, S., Clack, C.: A formalism for multi-level emergent behaviours in designed component-based systems and agent-based simulations. In: Aziz-Alaoui, M., Bertelle, C. (eds.) From System Complexity to Emergent Properties, Understanding Complex Systems, vol. 12, pp. 101–114. Springer (2009)

    Google Scholar 

  5. David, D., Courdier, R.: See emergence as a metaknowledge. a way to reify emergent phenomena in multiagent simulations? In: Proceedings of ICAART 2009, Porto, Portugal, pp. 564–569 (2009)

    Google Scholar 

  6. Davis, P., Hillestad, R.: Families of model that cross levels of resolution: Issues for design, calibration and management. In: 25th Winter Simulation Conference, WSC 1993 (1993)

    Google Scholar 

  7. Ferber, J., Müller, J.P.: Influences and reaction: a model of situated multiagent systems. In: 2nd International Conference on Multi-Agent Systems (ICMAS 1996), pp. 72–79 (1996)

    Google Scholar 

  8. Gaud, N., Galland, S., Gechter, F., Hilaire, V., Koukam, A.: Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory 16, 1659–1676 (2008)

    Article  Google Scholar 

  9. Gil-Quijano, J., Louail, T., Hutzler, G.: From biological to urban cells: Lessons from three multilevel agent-based models. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 620–635. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Michel, F.: The irm4s model: the influence/reaction principle for multiagent based simulation. In: AAMAS 2007: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–3. ACM, New York (2007)

    Chapter  Google Scholar 

  11. Michel, F., Gouaïch, A., Ferber, J.: Weak interaction and strong interaction in agent based simulations. In: MABS 2003. LNCS, vol. 2927, pp. 43–56. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Moncion, T., Amar, P., Hutzler, G.: Automatic characterization of emergent phenomena in complex systems. Journal of Biological Physics and Chemistry 10, 16–23 (2010)

    Article  Google Scholar 

  13. Morvan, G.: Multi-level agent-based modeling - bibliography. CoRR abs/1205.0561 (May 2012)

    Google Scholar 

  14. Morvan, G., Jolly, D.: Multi-level agent-based modeling with the Influence Reaction principle. CoRR abs/1204.0634 (April 2012)

    Google Scholar 

  15. Morvan, G., Veremme, A., Dupont, D.: IRM4MLS: The influence reaction model for multi-level simulation. In: Bosse, T., Geller, A., Jonker, C.M. (eds.) MABS 2010. LNCS, vol. 6532, pp. 16–27. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Navarro, L., Flacher, F., Corruble, V.: Dynamic level of detail for large scale agent-based urban simulations. In: Tumer, Y., Sonenberg, S. (eds.) 10th Int. Conf on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 701–708 (2011)

    Google Scholar 

  17. Picault, S., Mathieu, P.: An interaction-oriented model for multi-scale simulation. In: The 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011) (2011)

    Google Scholar 

  18. Scerri, D., Hickmott, S., Drogoul, A., Padgham, L.: An architecture for distributed simulation with agent-based models. In: van der Hoek, Kaminka, Lespérance, Luck, Sen (eds.) Proc. of 9th Int. Conf on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 10-14, pp. 541–548 (2010)

    Google Scholar 

  19. Simulation Interoperability Standards Comittee (SISC): IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Framework and Rules. IEEE Computer Society (2000)

    Google Scholar 

  20. Soyez, J.B., Morvan, G., Merzouki, R., Dupont, D., Kubiak, P.: Multi-agent multi-level modeling – a methodology to simulate complex systems. In: Proceedings of the 23rd European Modeling & Simulation Symposium (2011)

    Google Scholar 

  21. Stratulat, T., Ferber, J., Tranier, J.: Masq: toward an integral approach to interaction. In: Proceedings of the 8th Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp. 813–820 (2009)

    Google Scholar 

  22. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: Prosa. Computers in Industry 37(3), 255–274 (1998)

    Article  Google Scholar 

  23. Vo, D.-A., Drogoul, A., Zucker, J.-D., Ho, T.-V.: A modelling language to represent and specify emerging structures in agent-based model. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 212–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Weyns, D., Holvoet, T.: Model for simultaneous actions in situated multi-agent systems. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.) MATES 2003. LNCS (LNAI), vol. 2831, pp. 105–118. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Zeigler, B., Kim, T., Praehofer, H.: Theory of Modeling and Simulation, 2nd edn. Academic Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soyez, JB., Morvan, G., Dupont, D., Merzouki, R. (2013). A Methodology to Engineer and Validate Dynamic Multi-level Multi-agent Based Simulations. In: Giardini, F., Amblard, F. (eds) Multi-Agent-Based Simulation XIII. MABS 2012. Lecture Notes in Computer Science(), vol 7838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38859-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38859-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38858-3

  • Online ISBN: 978-3-642-38859-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics