Skip to main content

Ancillary Studies on Neoplastic Cytologic Specimens

  • Chapter
  • First Online:
  • 1675 Accesses

Part of the book series: Cancer Treatment and Research ((CTAR,volume 160))

Abstract

Fine-needle aspiration (FNA) cytology is a safe, rapid, and cost-effective diagnostic procedure that is widely used for evaluating lesions at virtually any site in the human body. In order to provide valuable information that enables oncologists to make optimal therapeutic decisions, the use of ancillary studies as diagnostic adjuncts in cytology is often required. Ancillary studies allow us to document a lesion to be neoplastic or nonneoplastic, benign or malignant, primary or metastatic malignancy, and the possible primary origin of a metastatic neoplasm. In addition, some tests may provide prognostic and predictive information and assess eligibility of the patient for certain targeted therapies. Immunocytochemistry is the most commonly used ancillary method on cytology specimens; flow cytometric immunophenotyping is a very useful adjunct for the diagnosis of hematopoietic neoplasms. Recently, advances in molecular biology and biomedical research have had a major impact on the practice of pathology including cytology. As a result, cytogenetic and molecular studies have been increasingly applied in daily practice. It is noteworthy that ancillary test results should be evaluated in concert with cytologic features, clinical and radiologic findings to avoid erroneous interpretation. This chapter outlines the utility of immunocytochemistry, flow cytometric, cytogenetic, and molecular studies in the cytologic diagnosis of neoplastic lesions including their indications, sample requirements, reliability and limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chu P, Wu E, Weiss LM (2000) Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 13:962–972

    Article  PubMed  CAS  Google Scholar 

  2. Gyure KA, Morrison AL (2000) Cytokeratin 7 and 20 expression in choroid plexus tumors: utility in differentiating these neoplasms from metastatic carcinomas. Mod Pathol 13:638–643

    Article  PubMed  CAS  Google Scholar 

  3. Wang NP, Zee S, Zarbo RJ et al (1995) Coordinate expression of cytokeratins 7 and 20 defines unique subsets of carcinomas. Appl Immunohistochem 3:99–107

    Google Scholar 

  4. Moldvay J, Jackel M, Bogos K et al (2004) The role of TTF-1 in differentiating primary and metastatic lung adenocarcinomas. Pathol Oncol Res 10:85–88

    Article  PubMed  CAS  Google Scholar 

  5. Dabbs DJ, Abendroth CS, Grenko RT et al (1997) Immunocytochemistry on the Thinprep processor. Diagn Cytopathol 17:388–392

    Article  PubMed  CAS  Google Scholar 

  6. Guiter GE, Gatscha RM, Zakowski MF (1999) ThinPrep vs. conventional smears in fine-needle aspirations of sarcomas: a morphological and immunocytochemical study. Diagn Cytopathol 21:351–354

    Google Scholar 

  7. Leung SW, Bedard YC (1996) Immunocytochemical staining on ThinPrep processed smears. Mod Pathol 9:304–306

    PubMed  CAS  Google Scholar 

  8. Mehta P, Battifora H 1993 How to do multiple immunostains when only one tissue slide is available. The “peel and stick” method. Appl Immunohistochem 1:297–298

    Google Scholar 

  9. Miller RT, Kubier P (2002) Immunohistochemistry on cytologic specimens and previously stained slides (when no paraffin block is available). J Histotechnology 25:251–257

    Article  Google Scholar 

  10. Sherman ME, Jimenez-Joseph D, Gangi MD (1994) Immunostaining of small cytologic specimens. Facilitation with cell transfer. Acta Cytol 38:18–22

    PubMed  CAS  Google Scholar 

  11. Gong Y, Joseph T, Sneige N (2005) Validation of commonly used immunostains on cell-transferred cytologic specimens. Cancer 105:158–164

    Article  PubMed  Google Scholar 

  12. Wolff AC, Hammond ME, Schwartz JN et al (2007) American society of clinical oncology/college of american pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  PubMed  CAS  Google Scholar 

  13. Goldstein NS, Ferkowicz M, Odish E et al (2003) Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma. Am J Clin Pathol 120:86–92

    Article  PubMed  Google Scholar 

  14. Nizzoli R, Bozzetti C, Crafa P et al (2003) Immunocytochemical evaluation of HER-2/neu on fine-needle aspirates from primary breast carcinomas. Diagn Cytopathol 28:142–146

    Article  PubMed  Google Scholar 

  15. Gong Y, Symmans WF, Krishnamurthy S et al (2004) Optimal fixation conditions for immunocytochemical analysis of estrogen receptor in cytologic specimens of breast carcinoma. Cancer 102:34–40

    Article  PubMed  CAS  Google Scholar 

  16. Gong Y, Han E, Guo M et al (2010) Stability of estrogen receptor status in breast carcinoma: a comparison between primary and metastatic tumors with regard to disease course and intervening systemic therapy. Cancer 117(4):705–713

    Article  PubMed  Google Scholar 

  17. Jimenez-Heffernan JA, Vicandi B, Lopez-Ferrer P et al (2001) Value of fine needle aspiration cytology in the initial diagnosis of Hodgkin’s disease. Analysis of 188 cases with an emphasis on diagnostic pitfalls. Acta Cytol 45:300–306

    Article  PubMed  CAS  Google Scholar 

  18. Gong Y, Caraway N, Gu J et al (2003) Evaluation of interphase fluorescence in situ hybridization for the t(14;18)(q32;q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer 99:385–393

    Article  PubMed  Google Scholar 

  19. Katz RL (1991) Cytologic diagnosis of leukemia and lymphoma values and limitations. Clin Lab Med 11:469–499

    PubMed  CAS  Google Scholar 

  20. Damle RN, Wasil T, Fais F et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847

    PubMed  CAS  Google Scholar 

  21. Del Poeta G, Maurillo L, Venditti A et al (2001) Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood 98:2633–2639

    Article  PubMed  Google Scholar 

  22. Verstovsek G, Chakraborty S, Ramzy I et al (2002) Large B-cell lymphomas: fine-needle aspiration plays an important role in initial diagnosis of cases which are falsely negative by flow cytometry. Diagn Cytopathol 27:282–285

    Article  PubMed  Google Scholar 

  23. Chen HI, Akpolat I, Mody DR et al (2006) Restricted kappa/lambda light chain ratio by flow cytometry in germinal center B cells in hashimoto thyroiditis. Am J Clin Pathol 125:42–48

    PubMed  Google Scholar 

  24. Jorgensen JL (2005) State of the art symposium: flow cytometry in the diagnosis of lymphoproliferative disorders by fine-needle aspiration. Cancer 105:443–451

    Google Scholar 

  25. Beck RC, Stahl S, O’Keefe CL et al (2003) Detection of mature T-cell leukemias by flow cytometry using anti-T-cell receptor V beta antibodies. Am J Clin Pathol 120:785–794

    Article  PubMed  CAS  Google Scholar 

  26. Morice WG, Kimlinger T, Katzmann JA et al (2004) Flow cytometric assessment of TCR-Vbeta expression in the evaluation of peripheral blood involvement by T-cell lymphoproliferative disorders: a comparison with conventional T-cell immunophenotyping and molecular genetic techniques. Am J Clin Pathol 121:373–383

    Article  PubMed  CAS  Google Scholar 

  27. Galindo LM, Garcia FU, Hanau CA et al (2000) Fine-needle aspiration biopsy in the evaluation of lymphadenopathy associated with cutaneous T-cell lymphoma (mycosis fungoides/sezary syndrome). Am J Clin Pathol 113:865–871

    Article  PubMed  CAS  Google Scholar 

  28. Katz RL, Hirsch-Ginsberg C, Childs C et al (1991) The role of gene rearrangements for antigen receptors in the diagnosis of lymphoma obtained by fine-needle aspiration. A study of 63 cases with concomitant immunophenotyping. Am J Clin Pathol 96:479–490

    PubMed  CAS  Google Scholar 

  29. Barr FG (2004) Diagnostic applications of chromosomal translocations in bone and soft tissue sarcomas. Expert Rev Mol Diagn 4:579–582

    Google Scholar 

  30. Beatty BG, Bryant R, Wang W et al (2004) HER-2/neu detection in fine-needle aspirates of breast cancer: fluorescence in situ hybridization and immunocytochemical analysis. Am J Clin Pathol 122:246–255

    Article  PubMed  CAS  Google Scholar 

  31. Gu M, Ghafari S, Zhao M (2005) Fluorescence in situ hybridization for HER-2/neu amplification of breast carcinoma in archival fine needle aspiration biopsy specimens. Acta Cytol 49:471–476

    Article  PubMed  Google Scholar 

  32. Moore JG, To V, Patel SJ et al (2000) HER-2/neu gene amplification in breast imprint cytology analyzed by fluorescence in situ hybridization: direct comparison with companion tissue sections. Diagn Cytopathol 23:299–302

    Article  PubMed  CAS  Google Scholar 

  33. Tomas AR, Praca MJ, Fonseca R et al (2004) Assessing HER-2 status in fresh frozen and archival cytological samples obtained by fine needle aspiration cytology. Cytopathology 15:311–314

    Article  PubMed  CAS  Google Scholar 

  34. Sauter G, Lee J, Bartlett JM et al (2009) Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol 27:1323–1333

    Article  PubMed  CAS  Google Scholar 

  35. Gong Y, Booser DJ, Sneige N (2005) Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer 103:1763–1769

    Article  PubMed  CAS  Google Scholar 

  36. Tapia C, Savic S, Wagner U et al (2007) HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res 9:R31

    Article  PubMed  Google Scholar 

  37. Xiao C, Gong Y, Han EY et al (2011) Stability of HER2-positive status in breast carcinoma: a comparison between primary and paired metastatic tumors with regard to the possible impact of intervening trastuzumab treatment. Ann Oncol 22:1547–1553

    Article  PubMed  CAS  Google Scholar 

  38. Gong Y, Gilcrease M, Sneige N (2005) Reliability of chromogenic in situ hybridization for detecting HER-2 gene status in breast cancer: comparison with fluorescence in situ hybridization and assessment of interobserver reproducibility. Mod Pathol 18:1015–1021

    Article  PubMed  CAS  Google Scholar 

  39. Gong Y, Sweet W, Duh YJ et al (2009) Chromogenic in situ hybridization is a reliable method for detecting HER2 gene status in breast cancer: a multicenter study using conventional scoring criteria and the new ASCO/CAP recommendations. Am J Clin Pathol 131:490–497

    Article  PubMed  CAS  Google Scholar 

  40. Gong Y, Sweet W, Duh YJ et al (2009) Performance of chromogenic in situ hybridization on testing HER2 Status in breast carcinomas with chromosome 17 polysomy and equivocal (2+) herceptest results: a study of two institutions using the conventional and new ASCO/CAP scoring criteria. Am J Clin Pathol 132:228–236

    Article  PubMed  CAS  Google Scholar 

  41. Tanner M, Gancberg D, Di Leo A et al (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157:1467–1472

    Article  PubMed  CAS  Google Scholar 

  42. Kim GY, Oh YL (2004) Chromogenic in situ hybridization analysis of HER-2/neu status in cytological samples of breast carcinoma. Cytopathology 15:315–320

    Article  PubMed  CAS  Google Scholar 

  43. Lin F, Shen T, Prichard JW (2005) Detection of Her-2/neu oncogene in breast carcinoma by chromogenic in situ hybridization in cytologic specimens. Diagn Cytopathol 33:376–380

    Article  PubMed  Google Scholar 

  44. Vocaturo A, Novelli F, Benevolo M et al (2006) Chromogenic in situ hybridization to detect HER-2/neu gene amplification in histological and ThinPrep-processed breast cancer fine-needle aspirates: a sensitive and practical method in the trastuzumab era. Oncologist 11:878–886

    Article  PubMed  CAS  Google Scholar 

  45. Alkan S, Lehman C, Sarago C et al (1995) Polymerase chain reaction detection of immunoglobulin gene rearrangement and bcl-2 translocation in archival glass slides of cytologic material. Diagn Mol Pathol 4:25–31

    Article  PubMed  CAS  Google Scholar 

  46. Belaud-Rotureau MA, Parrens M, Carrere N et al (2007) Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol 38:365–372

    Article  PubMed  CAS  Google Scholar 

  47. Buno I, Nava P, Alvarez-Doval A et al (2005) Lymphoma associated chromosomal abnormalities can easily be detected by FISH on tissue imprints. An underused diagnostic alternative. J Clin Pathol 58:629–633

    Article  PubMed  CAS  Google Scholar 

  48. Kishimoto K, Kitamura T, Fujita K et al (2006) Cytologic differential diagnosis of follicular lymphoma grades 1 and 2 from reactive follicular hyperplasia: cytologic features of fine-needle aspiration smears with Pap stain and fluorescence in situ hybridization analysis to detect t(14;18)(q32;q21) chromosomal translocation. Diagn Cytopathol 34:11–17

    Article  PubMed  Google Scholar 

  49. Richmond J, Bryant R, Trotman W et al (2006) FISH detection of t(14;18) in follicular lymphoma on papanicolaou-stained archival cytology slides. Cancer 108:198–204

    Article  PubMed  Google Scholar 

  50. Ahmed SM, Salgia R (2006) Epidermal growth factor receptor mutations and susceptibility to targeted therapy in lung cancer. Respirology 11:687–692

    Article  PubMed  Google Scholar 

  51. Billah S, Stewart J, Staerkel G et al (2011) EGFR and KRAS mutations in lung carcinoma: molecular testing by using cytology specimens. Cancer cytopathol 119:111–117

    Article  PubMed  CAS  Google Scholar 

  52. Kulmala SM, Syrjanen S, Shabalova I et al (2004) Human papillomavirus testing with the hybrid capture 2 assay and PCR as screening tools. J Clin Microbiol 42:2470–2475

    Article  PubMed  CAS  Google Scholar 

  53. Day SP, Hudson A, Mast A et al (2009) Analytical performance of the investigational use only cervista HPV HR test as determined by a multi-center study. J Clin Virol 45(1):S63–S72

    Article  PubMed  CAS  Google Scholar 

  54. Arentsen HC, de la Rosette JJ, de Reijke TM et al (2007) Fluorescence in situ hybridization: a multitarget approach in diagnosis and management of urothelial cancer. Expert Rev Mol Diagn 7:11–19

    Article  PubMed  CAS  Google Scholar 

  55. Assersohn L, Gangi L, Zhao Y et al (2002) The feasibility of using fine needle aspiration from primary breast cancers for cDNA microarray analyses. Clin Cancer Res 8:794–801

    PubMed  CAS  Google Scholar 

  56. Ayers M, Symmans WF, Stec J et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22:2284–2293

    Article  PubMed  CAS  Google Scholar 

  57. Pusztai L, Ayers M, Stec J et al (2003) Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res 9:2406–2415

    PubMed  CAS  Google Scholar 

  58. Sotiriou C, Powles TJ, Dowsett M et al (2002) Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res 4:R3

    Article  PubMed  Google Scholar 

  59. Symmans WF, Ayers M, Clark EA et al (2003) Total RNA yield and microarray gene expression profiles from fine-needle aspiration biopsy and core-needle biopsy samples of breast carcinoma. Cancer 97:2960–2971

    Article  PubMed  CAS  Google Scholar 

  60. Gong Y, Yan K, Lin F et al (2007) Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 8:203–211

    Article  PubMed  CAS  Google Scholar 

  61. Cheung CC, Carydis B, Ezzat S et al (2001) Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab 86:2187–2190

    Article  PubMed  CAS  Google Scholar 

  62. Cohen Y, Rosenbaum E, Clark DP et al (2004) Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 10:2761–2765

    Article  PubMed  CAS  Google Scholar 

  63. Gustafson KS, Furth EE, Heitjan DF et al (2004) DNA methylation profiling of cervical squamous intraepithelial lesions using liquid-based cytology specimens: an approach that utilizes receiver-operating characteristic analysis. Cancer 102:259–268

    Article  PubMed  CAS  Google Scholar 

  64. Pu RT, Laitala LE, Alli PM et al (2003) Methylation profiling of benign and malignant breast lesions and its application to cytopathology. Mod Pathol 16:1095–1101

    Article  PubMed  Google Scholar 

  65. Pu RT, Laitala LE, Clark DP (2006) Methylation profiling of urothelial carcinoma in bladder biopsy and urine. Acta Cytol 50:499–506

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gong, Y. (2014). Ancillary Studies on Neoplastic Cytologic Specimens. In: Nayar, R. (eds) Cytopathology in Oncology. Cancer Treatment and Research, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38850-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38850-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38849-1

  • Online ISBN: 978-3-642-38850-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics