Skip to main content

Efficient GCI Detection for Efficient Sparse Linear Prediction

  • Conference paper
Advances in Nonlinear Speech Processing (NOLISP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7911))

Included in the following conference series:

Abstract

We propose a unified non-linear approach that offers an efficient closed-form solution for the problem of sparse linear prediction analysis. The approach is based on our previous work for minimization of the weighted l 2-norm of the prediction error. The weighting of the l 2-norm is done in a way that less emphasis is given to the prediction error around the Glottal Closure Instants (GCI) as they are expected to attain the largest values of error and hence, the resulting cost function approaches the ideal l 0-norm cost function for sparse residual recovery. As such, the method requires knowledge of the GCIs. In this paper we use our recently developed GCI detection algorithm which is particularly suitable for this problem as it does not rely on residuals themselves for detection of GCIs. We show that our GCI detection algorithm provides slightly better sparsity properties in comparison to a recent powerful GCI detection algorithm. Moreover, as the computational cost of our GCI detection algorithm is quite low, the computational cost of the overall solution is considerably lower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alku, P., Pohjalainen, J., Vainio, M., Laukkanen, A., Story, B.: Improved formant frequency estimation from high-pitched vowels by downgrading the contribution of the glottal source with weighted linear prediction. In: INTERSPEECH (2012)

    Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  3. Candès, E.J., Romberg, J.: l1-magic: Recovery of sparse signals via convex programming (2005)

    Google Scholar 

  4. Candès, E.J., Wakin, M.B.: Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Denoel, E., Solvay, J.P.: Linear prediction of speech with a least absolute error criterion. IEEE Transactions on Acoustics, Speech and Signal Processing 33, 1397–1403 (1985)

    Article  Google Scholar 

  6. Drugman, T.: Gloat toolbox, http://tcts.fpms.ac.be/drugman/

  7. Drugman, T., Thomas, M., Gudnason, J., Naylor, P., Dutoit, T.: Detection of glottal closure instants from speech signals: A quantitative review. IEEE Transactions on Audio, Speech, and Language Processing 20(3), 994–1006 (2012)

    Article  Google Scholar 

  8. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren, N.L., Zue, V.: DARPA TIMIT acoustic-phonetic continuous speech corpus. Tech. rep., U.S. Dept. of Commerce, NIST, Gaithersburg, MD (1993)

    Google Scholar 

  9. Giacobello, D.: Sparsity in Linear Predictive Coding of Speech. Ph.D. thesis, Multimedia Information and Signal Processing, Department of Electronic Systems, Aalborg University (2010)

    Google Scholar 

  10. Giacobello, D., Christensen, M.G., Dahl, J., Jensen, S.H., Moonen, M.: Sparse linear predictors for speech processing. In: Proceedings of the INTERSPEECH (2009)

    Google Scholar 

  11. Giacobello, D., Christensen, M.G., Murth, M.N., Jensen, S.H., Marc Moonen, F.: Sparse linear prediction and its applications to speech processing. IEEE Transactions on Audio, Speech and Language Processing 20, 1644–1657 (2012)

    Article  Google Scholar 

  12. Giacobello, D., Christensen, M.G., Murthi, M.N., Jensen, S.H., Moonen, M.: Enhancing sparsity in linear prediction of speech by iteratively reweighted 1-norm minimization. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, ICASSP (2010)

    Google Scholar 

  13. Giacobello, D., Christensen, M., Murthi, M., Jensen, S., Moonen, M.: Retrieving sparse patterns using a compressed sensing framework: Applications to speech coding based on sparse linear prediction. IEEE Signal Processing Letters 17 (2010)

    Google Scholar 

  14. Hurley, N., Rickard, S.: Comparing measures of sparsity. IEEE Transactions on Information Theory 55, 4723–4740 (2009)

    Article  MathSciNet  Google Scholar 

  15. Khanagha, V.: Novel Multiscale methods for non-linear speech analysis, Ph.D. thesis, University of Bordeaux 1 (2013), http://geostat.bordeaux.inria.fr/index.php/vahid-khanagha.html

  16. Khanagha, V., Daoudi, K.: An efficient solution to sparse linear prediction analysis of speech. EURASIP Journal on Audio, Speech, and Music Processing (2013)

    Google Scholar 

  17. Khanagha, V., Daoudi, K., Yahia, H.: A novel multiscale method for detection of glottal closure instants. Submitted to IEEE Transactions on Audio, Speech, and Language Processing (2013)

    Google Scholar 

  18. Meng, D., Zhao, Q., Xu, Z.: Improved robustness of sparse pca by l1-norm maximization. Pattern Recognition 45, 487–497 (2012)

    Article  MATH  Google Scholar 

  19. Turiel, A., del Pozo, A.: Reconstructing images from their most singular fractal manifold. IEEE Transactions on Image Processing 11, 345–350 (2002)

    Article  MathSciNet  Google Scholar 

  20. Turiel, A., Parga, N.: The multi-fractal structure of contrast changes in natural images: from sharp edges to textures. Neural Computation 12, 763–793 (2000)

    Article  Google Scholar 

  21. Turiel, A., Yahia, H., Pérez-Vicente, C.: Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part 1: singularity analysis. Journal of Physics A: Mathematical and Theoretical 41, 015501 (2008)

    Google Scholar 

  22. Yahia, H., Sudre, J.: Garçon, V., Pottier, C.: High-resolution ocean dynamics from microcanonical formulations in non linear complex signal analysis. In: AGU Fall Meeting. American Geophysical Union, San Francisco (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khanagha, V., Daoudi, K. (2013). Efficient GCI Detection for Efficient Sparse Linear Prediction. In: Drugman, T., Dutoit, T. (eds) Advances in Nonlinear Speech Processing. NOLISP 2013. Lecture Notes in Computer Science(), vol 7911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38847-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38847-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38846-0

  • Online ISBN: 978-3-642-38847-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics