Skip to main content

Partial Symmetry Breaking and Heteroclinic Tangencies

  • Conference paper
  • First Online:
Progress and Challenges in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 54))

Abstract

We study some global aspects of the bifurcation of an equivariant family of volume-contracting vector fields on the three-dimensional sphere. When part of the symmetry is broken, the vector fields exhibit Bykov cycles. Close to the symmetry, we investigate the mechanism of the emergence of heteroclinic tangencies coexisting with transverse connections. We find persistent suspended horseshoes accompanied by attracting periodic trajectories with long periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afraimovich, V.S., Shilnikov, L.P.: Strange attractors and quasiattractors. In: Barenblatt, G.I., Iooss, G., Joseph, D.D. (eds.) Nonlinear Dynamics and Turbulence, pp. 1–51. Pitman, Boston (1983)

    Google Scholar 

  2. Aguiar, M., Castro, S.B., Labouriau, I.S.: Dynamics near a heteroclinic network. Nonlinearity 18, 391–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguiar, M., Castro, S.B., Labouriau, I.S.: Simple vector fields with complex behaviour. Int. J. Bifurc. Chaos 16(2), 369–381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aguiar, M., Labouriau, I.S., Rodrigues, A.A.P.: Swicthing near a heteroclinic network of rotating nodes. Dyn. Syst. Int. J. 25(1), 75–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonatti, C., Díaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity. Springer, Berlin/Heidelberg (2005)

    MATH  Google Scholar 

  6. Bowen, R.: A horseshoe with positive measure. Invent. Math. 29, 203–204 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics. Springer, Berlin/New York (1975)

    MATH  Google Scholar 

  8. Bykov, V.V.: Orbit structure in a neighbourhood of a separatrix cycle containing two Saddle-Foci. Am. Math. Soc. Transl. 200, 87–97 (2000)

    MathSciNet  Google Scholar 

  9. Colli, E.: Infinitely many coexisting strange attractors. Ann. Inst. Henri Poincaré Anal. Non Linéaire 15, 539–579 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Field, M.: Lectures on Bifurcations, Dynamics and Symmetry. Pitman Research Notes in Mathematics Series, vol. 356. Longman, Harlow (1996)

    Google Scholar 

  11. Golubitsky, M., Stewart, I.: The Symmetry Perspective, Birkhauser, Basel/Boston (2000)

    Google Scholar 

  12. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: Quasiattractors and homoclinic tangencies. Comput. Math. Appl. 34(2–4), 195–227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonchenko, S.V., Ovsyannikov, I.I., Turaev, D.V.: On the effect of invisibility of stable periodic orbits at homoclinic bifurcations. Phys. D 241, 1115–1122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Homburg, A.J.: Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbit to a saddle-focus equilibria. Nonlinearity 15, 411–428 (2002)

    Article  MathSciNet  Google Scholar 

  15. Homburg, A.J., Sandstede, B.: Homoclinic and Heteroclinic Bifurcations in Vector Fields. Handbook of Dynamical Systems, vol. 3, pp. 379–524. North Holland, Amsterdam (2010)

    Google Scholar 

  16. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Syst. 15, 121–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Labouriau, I.S., Rodrigues, A.A.P.: Global generic dynamics close to symmetry. J. Differ. Equ. 253(8), 2527–2557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lamb, J.S.W., Teixeira, M.A., Webster, K.N.: Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3. J. Differ. Equ. 219, 78–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Melbourne, I., Proctor, M.R.E., Rucklidge, A.M.: A heteroclinic model of geodynamo reversals and excursions. In: Chossat, P., Armbruster, D., Oprea, I. (eds.) Dynamo and Dynamics, a Mathematical Challenge, pp. 363–370. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  20. Mora, L., Viana, M.: Abundance of strange attractors. Acta Math. 171, 1–71 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Newhouse, S.E.: Diffeomorphisms with infinitely many sinks. Topology 13, 9–18 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Newhouse, S.E.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Etudes Sci. 50, 101–151 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ovsyannikov, I.M., Shilnikov, L.P.: On systems with saddle-focus homoclinic curve. Math. USSR Sb. 58, 557–574 (1987)

    Article  MATH  Google Scholar 

  24. Rodrigues, A.A.P.: Repelling dynamics near a Bykov cycle. J. Dyn. Differ. Equ. (2013, to appear). doi:10.1007/s10884-013-9289-2

    Google Scholar 

  25. Rodrigues, A.A.P., Labouriau, I.S.: Spiraling sets near a heteroclinic network. Preprint – CMUP n. 2011–22 available at arXiv:1304.5283v1

    Google Scholar 

  26. Samovol, V.S.: Linearization of a system of differential equations in the neighbourhood of a singular point. Sov. Math. Dokl. 13, 1255–1959 (1972)

    MATH  Google Scholar 

  27. Shilnikov, L.P.: Some cases of generation of periodic motion from singular trajectories. Math. USSR Sb. 61(103), 443–466 (1963)

    Google Scholar 

  28. Shilnikov, L.P.: A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl. 6, 163–166 (1965)

    Google Scholar 

  29. Shilnikov, L.P.: On a Poincaré–Birkhoff problem. Math. USSR Sb. 3, 353–371 (1967)

    Article  Google Scholar 

  30. Shilnikov, L.P.: The existence of a denumerable set of periodic motions in four dimensional space in an extended neighbourhood of a saddle-focus. Sov. Math. Dokl. 8(1), 54–58 (1967)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Maria Carvalho for helpful discussions.

CMUP is supported by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the Fundação para a Ciência e a Tecnologia (FCT) under the project PEst-C/MAT/UI0144/2011. A.A.P. Rodrigues was supported by the grant SFRH/BPD/84709/2012 of FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel S. Labouriau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Labouriau, I.S., Rodrigues, A.A.P. (2013). Partial Symmetry Breaking and Heteroclinic Tangencies. In: Ibáñez, S., Pérez del Río, J., Pumariño, A., Rodríguez, J. (eds) Progress and Challenges in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38830-9_17

Download citation

Publish with us

Policies and ethics