A Framework for Employee Appraisals Based on Inductive Logic Programming and Data Mining Methods

  • Darah Aqel
  • Sunil Vadera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)


This paper develops a new semantic framework that supports employee performance appraisals, based on inductive logic programming and data mining techniques. The framework is applied to learn a grammar for writing SMART objectives and provide feedback. The paper concludes with an empirical evaluation of the framework which shows promising results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy, K., Cleveland, J.: Performance Appraisal: An Organizational Perspective, 3rd edn., 349 pages. Allyn and Bacon (1991)Google Scholar
  2. 2.
    Rowland, C., Hall, R.: Organizational Justice and Performance: is Appraisal Fair? EuroMed Journal of Business 7(3), 280–293 (2012)CrossRefGoogle Scholar
  3. 3.
    Hurd, A.R., et al.: Leisure Service Management. Human Kinetics, 386 pages (2008)Google Scholar
  4. 4.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing, 680 pages. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Alpaydin, E.: Introduction to Machine Learning, 2nd edn., 584 pages. MIT Press (2010)Google Scholar
  6. 6.
    Muggleton, S., De Raedt, L.: Inductive Logic Programming: Theory and Methods. Proceedings of Journal of Logic Programming 19(20), 629–679 (1994)CrossRefGoogle Scholar
  7. 7.
    Witten, I., et al.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn., 664 pages. Morgan Kaufmann, Elsevier (2011)Google Scholar
  8. 8.
    Cunningham, H., et al.: Developing Language Processing Components with GATE Version 7 (A User Guide), The University of Sheffield (2012),
  9. 9.
    Miller, G., et al.: Introduction to WordNet: An On-line Lexical Database. International Journal of Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  10. 10.
    Pedersen, T., Kolhatkar, V.: WordNet: SenseRelate:: All Words - A Broad Coverage Word Sense Tagger that Maximizes Semantic Relatedness. In: The 2009 Annual Conference of the North American Chapter of the Assoc. Comp. Lingui., pp. 17–20 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Darah Aqel
    • 1
  • Sunil Vadera
    • 1
  1. 1.School of Computing, Science and EngineeringUniversity of SalfordSalfordUK

Personalised recommendations