GenDesc: A Partial Generalization of Linguistic Features for Text Classification

  • Guillaume Tisserant
  • Violaine Prince
  • Mathieu Roche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)


This paper presents an application that belongs to automatic classification of textual data by supervised learning algorithms. The aim is to study how a better textual data representation can improve the quality of classification. Considering that a word meaning depends on its context, we propose to use features that give important information about word contexts. We present a method named GenDesc, which generalizes (with POS tags) the least relevant words for the classification task.


Ranking Function Textual Data Sentiment Analysis Linguistic Feature Inverse Document Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, Z.: Distributional structure. Word 10, 146–162 (1954)Google Scholar
  2. 2.
    Joachims, T.: Text categorization with suport vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Gamon, M.: Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the 20th International Conference on Computational Linguistics, COLING 2004. Association for Computational Linguistics (2004)Google Scholar
  4. 4.
    Joshi, M., Penstein-Rosé, C.: Generalizing dependency features for opinion mining. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, ACLShort 2009, pp. 313–316. Association for Computational Linguistics (2009)Google Scholar
  5. 5.
    Porter, M.F.: Readings in information retrieval, 313–316. Morgan Kaufmann Publishers Inc. (1997)Google Scholar
  6. 6.
    Prabhakaran, V., Rambow, O., Diab, M.: Predicting overt display of power in written dialogs. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 518–522 (June 2012)Google Scholar
  7. 7.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg! In: Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.) ICWSM. AAAI Press (2011)Google Scholar
  8. 8.
    Matsumoto, S., Takamura, H., Okumura, M.: Sentiment classification using word sub-sequences and dependency sub-trees. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 301–311. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Xia, R., Zong, C.: Exploring the use of word relation features for sentiment classification. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING 2010, pp. 1336–1344. Association for Computational Linguistics (2010)Google Scholar
  10. 10.
    Grouin, C., Berthelin, J.B., Ayari, S.E., Heitz, T., Hurault-Plantet, M., Jardino, M., Khalis, Z., Lastes, M.: Présentation de deft 2007. In: Actes de l’atelier de clôture du 3eme Défi Fouille de Textes, pp. 1–8 (2007)Google Scholar
  11. 11.
    Chauché, J.: Un outil multidimensionnel de l’analyse du discours. In: Proceedings of the 10th International Conference on Computational Linguistics, COLING 1984, pp. 11–15. Association for Computational Linguistics (1984)Google Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Tisserant
    • 1
  • Violaine Prince
    • 1
  • Mathieu Roche
    • 1
  1. 1.LIRMM, CNRSUniv Montpellier 2MontpellierFrance

Personalised recommendations