An RDF-Based Semantic Index

  • F. Amato
  • F. Gargiulo
  • A. Mazzeo
  • V. Moscato
  • A. Picariello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)


Managing efficiently and effectively very large amount of digital documents requires the definition of novel indexes able to capture and express documents’ semantics. In this work, we propose a novel semantic indexing technique particularly suitable for knowledge management applications. Algorithms and data structures are presented and preliminary experiments are reported, showing the efficiency and effectiveness of the proposed index for semantic queries.


Resource Description Framework Query Expansion Information Retrieval System Word Sense Disambiguation Query Keyword 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mihalcea, R., Moldovan, D.: Semantic indexing using wordnet senses. In: Proceedings of the ACL Workshop on IR and NLP, Hong Kong (2000)Google Scholar
  2. 2.
    Stein, J.: Alternative methods of indexing legal material: Development of a conceptual index. In: Conference Law Via the Internet 1997, Sydney, Australia (1997)Google Scholar
  3. 3.
    Amato, F., Fasolino, A., Mazzeo, A., Moscato, V., Picariello, A., Romano, S., Tramontana, P.: Ensuring semantic interoperability for e-health applications. In: 2011 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 315–320. IEEE (2011)Google Scholar
  4. 4.
    Woods, W.: Conceptual indexing: A better way to organize knowledge (1997)Google Scholar
  5. 5.
    Mihalcea, R., Moldovan, D.: An iterative approach to word sense disambiguation. In: Proceedings of FLAIRS, pp. 219–223 (2000)Google Scholar
  6. 6.
    Mihalcea, R., Moldovan, D.: Semantic indexing using wordnet senses. In: Proceedings of the ACL 2000 Workshop on Recent Advances in Natural Language Processing and Information Retrieval, Association for Computational Linguistics, pp. 35–45 (2000)Google Scholar
  7. 7.
    Stokoe, C.: Differentiating homonymy and polysemy in information retrieval. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 403–410 (2005)Google Scholar
  8. 8.
    Gonzalo, J., Verdejo, F., Chugur, I., Cigarran, J.: Indexing with wordnet synsets can improve text retrieval. arXiv preprint cmp-lg/9808002 (1998)Google Scholar
  9. 9.
    D’Acierno, A., Moscato, V., Persia, F., Picariello, A., Penta, A.: iwin: A summarizer system based on a semantic analysis of web documents. In: 2012 IEEE Sixth International Conference on Semantic Computing (ICSC), pp. 162–169 (2012)Google Scholar
  10. 10.
    Hirst, G., Mohammad, S.: Semantic distance measures with distributional profiles of coarse-grained concepts. In: Modeling, Learning and Processing of Text Technological Data S. (2012)Google Scholar
  11. 11.
    Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for word sense identification. WordNet: An Electronic Lexical Database 49, 265–283 (1998)Google Scholar
  12. 12.
    Mandreoli, F., Martoglia, R.: Knowledge-based sense disambiguation (almost) for all structures. Information Systems 36, 406–430 (2011)CrossRefGoogle Scholar
  13. 13.
    Samet, H.: The design and analysis of spatial data structures, vol. 85. Addison-Wesley, Reading (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Amato
    • 1
  • F. Gargiulo
    • 2
  • A. Mazzeo
    • 1
  • V. Moscato
    • 1
  • A. Picariello
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica e Tecnologie dell’InformazioneUniversity of Naples “Federico II”NaplesItaly
  2. 2.Centro Italiano Ricerche Aereospaziali “CIRA”CapuaItaly

Personalised recommendations