MOSAIC: A Cohesive Method for Orchestrating Discrete Analytics in a Distributed Model

  • Ransom Winder
  • Joseph Jubinski
  • John Prange
  • Nathan Giles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)


Achieving an HLT analytic architecture that supports easy integration of new and legacy analytics is challenging given the independence of analytic development, the diversity of data modeling, and the need to avoid rework. Our solution is to separate input, artifacts, and results from execution by delineating different subcomponents including an inbound gateway, an executive, an analytic layer, an adapter layer, and a data bus. Using this design philosophy, MOSAIC is an architecture of replaceable subcomponents built to support workflows of loosely-coupled analytics bridged by a common data model.


HLT architecture information extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altomari, P.J., Currier, P.A.: Focus of TIPSTER Phases I and II. In: Advances in Text Processing: TIPSTER Program Phase II, pp. 9–11. Morgan Kaufmann Publishers, Inc., San Francisco (April 1994-September 1996)Google Scholar
  2. 2.
    Grishman, R.: Building an Architecture: A CAWG Saga. In: Advances in Text Processing: TIPSTER Program Phase II, pp. 213–215. Morgan Kaufmann Publishers, Inc., San Francisco (1996)Google Scholar
  3. 3.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: An Architecture for Development of Robust HLT. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL 2002), Philadelphia, PA, pp. 168–175 (2002)Google Scholar
  4. 4.
    Ferrucci, D., Lally, A.: UIMA: An Architectural Approach to Unstructured Information Processing in the Corporate Research Environment. Natural Language Engineering 10(3-4), 327–348 (2004)CrossRefGoogle Scholar
  5. 5.
    Ferrucci, D., et al.: Building Watson: an Overview of the DeepQA Project. AI Magazine 31(3), 59–79 (2010)Google Scholar
  6. 6.
    Clarke, J., Srikumar, V., Sammons, M., Roth, D.: An NLP Curator (or: How I Learned to Stop Worrying and Love NLP Pipelines). In: Proceedings of LREC 2012 (2012)Google Scholar
  7. 7.
    Boschee, E., Weischedel, R., Zamanian, A.: Automatic Information Extraction. In: Proceedings of the 2005 International Conference on Intelligence Analysis, pp. 2–4 (2005)Google Scholar
  8. 8.
    Surdeanu, M., Harabagiu, S.: Infrastructure for Open-domain Information Extraction. In: Proceedings of the Human Language Technology Conference, pp. 325–333 (2002)Google Scholar
  9. 9.
  10. 10.
    Alias-I, LingPipe 4.1.0,
  11. 11.
    Taylor, M., Carlson, L., Fontaine, S., Poisson, S.: Searching Semantic Resources for Complex Selectional Restrictions to Support Lexical Acquisition. In: Third International Conference on Advances in Semantic Processing, pp. 92–97 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ransom Winder
    • 1
  • Joseph Jubinski
    • 1
  • John Prange
    • 1
  • Nathan Giles
    • 1
  1. 1.MITRE CorporationAnnapolis JunctionUSA

Personalised recommendations