A Broadly Applicable and Flexible Conceptual Metagrammar as a Basic Tool for Developing a Multilingual Semantic Web

  • Vladimir A. Fomichov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)


The paperformulates the problem of constructing a broadly applicable and flexible Conceptual Metagrammar (CM). It is to be a collection of the rules enabling us to construct step by step a semantic representation (or text meaning representation) of practically arbitrary sentence or discourse pertaining to mass spheres of human’s professional activity. The opinion is grounded that the first version of broadly applicable and flexible CM is already available in the scientific literature. It is conjectured that the definition of the class of SK-languages (standard knowledge languages) provided by the theory of K-representations (knowledge representations) can be interpreted as the first version of broadly applicable and flexible CM. The current version of the latter theory is stated in the author’s monograph published by Springer in 2010. The final part of the paper describes the connections with the related approaches, in particular, with the studies on developing a Multilingual Semantic Web.


natural language processing conceptual metagrammar semantic markup language algorithm of semantic-syntactic analysis theory of Krepresentations SK-languages semantic representation text meaning representation Multilingual Semantic Web bioinformatics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Popescu, A.-M., Etzioni, O., Kautz, H.: Towards a Theory of Natural Language Interfaces to Databases. In: Proc. of the 8th Intern. Conf. on Intelligent User Interfaces, Miami, FL, pp. 149–157 (2003)Google Scholar
  2. 2.
    Kaufmann, E., Bernstein, A.: How Useful Are Natural Language Interfaces to the Semantic Web for Casual End-Users? In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 281–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Cimiano, P., Haase, P., Heizmann, J., Mantel, M.: ORAKEL: A Portable Natural Language Interface to Knowledge Bases. Technical Report, Institute AIFB, University of Karlsruhe, Germany (2007)Google Scholar
  4. 4.
    Frank, A., Krieger, H.-U., Xu, F., Uszkoreit, H., Crysmann, B., Jrg, B., Schaeffer, U.: Question Answering from Structured Knowledge Sources. J. of Applied Logic 5(1), 20–48 (2007)CrossRefGoogle Scholar
  5. 5.
    Prince, V., Roche, M. (eds.): Information Retrieval in Biomedicine: Natural Language Processing for Knowledge Integration. IGI Global (2009)Google Scholar
  6. 6.
    Harrington, B., Clark, S.: ASKNet: Creating and Evaluating Large Scale Integrated Semantic Networks. In: Proceedings of the 2008 IEEE International Conference on Semantic Computing, pp. 166–173. IEEE Computer Society, Washington DC (2008)CrossRefGoogle Scholar
  7. 7.
    Rindflesh, T.C., Kilicoglu, H., Fiszman, M., Roszemblat, G., Shin, D.: Semantic MEDLINE: An Advanced Information Management Application for Biomedicine. Information Services and Use, vol. 1, pp. 15–21. IOS Press (2011)Google Scholar
  8. 8.
    Wilks, Y., Brewster, C.: Natural Language Processing as a Foundation of the Semantic Web. Foundations and Trends in Web Science. Now Publ. Inc., Hanover (2006)Google Scholar
  9. 9.
    Fomichov, V.A.: The Formalization of Designing Natural Language Processing Systems. MAX Press, Moscow (2005) (in Russian)Google Scholar
  10. 10.
    Fomichov, V.A.: Theory of K-representations as a Source of an Advanced Language Platform for Semantic Web of a New Generation. In: Web Science Overlay J. On-line Proc. of the First Intern. Conference on Web Science, Athens, Greece, March 18-20 (2009),
  11. 11.
    Fomichov, V.A.: Semantics-Oriented Natural Language Processing: Mathematical Models and Algorithms. Springer, Heidelberg (2010a)zbMATHCrossRefGoogle Scholar
  12. 12.
    Fomichov, V.A.: Theory of K-representations as a Comprehensive Formal Framework for Developing a Multilingual Semantic Web. Informatica. An International Journal of Computing and Informatics 34(3), 387–396 (2010b) (Slovenia)Google Scholar
  13. 13.
    Fomichov, V.A.: A Mathematical Model for Describing Structured Items of Conceptual Level. Informatica. An Intern. J. of Computing and Informatics 20(1), 5–32 (1996) (Slovenia)MathSciNetGoogle Scholar
  14. 14.
    Fomichov, V.A., Kirillov, A.V.: A Formal Model for Constructing Semantic Expansions of the Search Requests About the Achievements and Failures. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 296–304. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Harrington, B., Wojtinnik, P.-R.: Creating a Standardized Markup Language for Semantic Networks. In: Proceedings of the 2011 IEEE Fifth International Conference on Semantic Computing, pp. 279–282. IEEE Computer Society, Washington DC (2011)CrossRefGoogle Scholar
  16. 16.
    Turnpenny, P.D., Ellard, S.: Emery’s Elements of Medical Genetics, 12th edn. Elsevier Limited, Edinburgh (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir A. Fomichov
    • 1
  1. 1.Department of Innovations and Business in the Sphere of Informational Technologies, Faculty of Business InformaticsNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations