Advertisement

Cross-Lingual Natural Language Querying over the Web of Data

  • Nitish Aggarwal
  • Tamara Polajnar
  • Paul Buitelaar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)

Abstract

The rapid growth of the Semantic Web offers a wealth of semantic knowledge in the form of Linked Data and ontologies, which can be considered as large knowledge graphs of marked up Web data. However, much of this knowledge is only available in English, affecting effective information access in the multilingual Web. A particular challenge arises from the vocabulary gap resulting from the difference in the query and the data languages. In this paper, we present an approach to perform cross-lingual natural language queries on Linked Data. Our method includes three components: entity identification, linguistic analysis, and semantic relatedness. We use Cross-Lingual Explicit Semantic Analysis to overcome the language gap between the queries and data. The experimental results are evaluated against 50 German natural language queries. We show that an approach using a cross-lingual similarity and relatedness measure outperforms other systems that use automatic translation. We also discuss the queries that can be handled by our approach.

Keywords

Semantic Web Natural Langauge Querying CLIR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mika, P., Potter, T.: Metadata statistics for a large web corpus. In: WWW 2012 Workshop on Linked Data on the Web (2012)Google Scholar
  2. 2.
    Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., De Jong, F.: Wikitranslate: query translation for cross-lingual information retrieval using only wikipedia. In: Proceedings of the 9th CLEF (2009)Google Scholar
  3. 3.
    Jones, G., Fantino, F., Newman, E., Zhang, Y.: Domain-specific query translation for multilingual information access using machine translation augmented with dictionaries mined from Wikipedia. In: CLIA 2008, p. 34 (2008)Google Scholar
  4. 4.
    Steinberger, R., Pouliquen, B., Ignat, C.: Exploiting multilingual nomenclatures and language-independent text features as an interlingua for cross-lingual text analysis applications. In: Proc. of the 4th Slovenian Language Technology Conf., Information Society (2004)Google Scholar
  5. 5.
    Freitas, A., Oliveira, J.G., O’Riain, S., Curry, E., Pereira da Silva, J.C.: Querying linked data using semantic relatedness: a vocabulary independent approach. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 40–51. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Unger, C., Bhmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D., Cimiano, P.: Sparql template based question answering. In: 21st International World Wide Web Conference, WWW 2012 (2012)Google Scholar
  7. 7.
    Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.: Natural language questions for the web of data. In: EMNLP-CoNLL 2012 (2012)Google Scholar
  8. 8.
    Lu, C., Xu, Y., Geva, S.: Web-based query translation for english-chinese CLIR. In: Computational Linguistics and Chinese Language Processing (CLCLP), pp. 61–90 (2008)Google Scholar
  9. 9.
    Pirkola, A., Hedlund, T., Keskustalo, H., Järvelin, K.: Dictionary-based cross-language information retrieval: Problems, methods, and research findings. Information Retrieval, 209–230 (2001)Google Scholar
  10. 10.
    Littman, M., Dumais, S.T., Landauer, T.K.: Automatic cross-language information retrieval using latent semantic indexing. In: Cross-Language Information Retrieval, ch. 5, pp. 51–62. Kluwer Academic Publishers (1998)Google Scholar
  11. 11.
    Zhang, D., Mei, Q., Zhai, C.: Cross-lingual latent topic extraction. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL 2010, pp. 1128–1137. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  12. 12.
    Sorg, P., Braun, M., Nicolay, D., Cimiano, P.: Cross-lingual information retrieval based on multiple indexes. In: Working Notes for the CLEF 2009 Workshop, Cross-Lingual Evaluation Forum, Corfu, Greece (2009)Google Scholar
  13. 13.
    Ferrández, Ó., Spurk, C., Kouylekov, M., Dornescu, I., Ferrández, S., Negri, M., Izquierdo, R., Tomás, D., Orasan, C., Neumann, G., Magnini, B., Vicedo, J.L.: The qall-me framework: A specifiable-domain multilingual question answering architecture. Web Semantics, 137–145 (2011)Google Scholar
  14. 14.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611 (2007)Google Scholar
  15. 15.
    Sorg, P., Cimiano, P.: An experimental comparison of explicit semantic analysis implementations for cross-language retrieval. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 36–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nitish Aggarwal
    • 1
  • Tamara Polajnar
    • 2
  • Paul Buitelaar
    • 1
  1. 1.Unit for Natural Language Processing, Digital Enterprise Research InstituteNational University of IrelandGalwayIreland
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUSA

Personalised recommendations