Advertisement

Extraction of Statements in News for a Media Response Analysis

  • Thomas Scholz
  • Stefan Conrad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)

Abstract

The extraction of statements is an essential step in a Media Response Analysis (MRA), because statements in news represent the most important information for a customer of a MRA and can be used as the underlying data for Opinion Mining in newspaper articles. We propose a machine learning approach to tackle this problem. For each sentence, our method extracts different features which indicate the importance of a sentence for a MRA. Classified sentences are filtered through a density-based clustering, before selected sentences are combined to statements. In our evaluation, this technique achieved better results than comparison methods from Text Summarization and Opinion Mining on two real world datasets.

Keywords

Information Extraction Text Data Mining Media Response Analysis Text Summarization Opinion Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzam, S., Humphreys, K., Gaizauskas, R.: Using coreference chains for text summarization. In: Proc. of the Workshop on Coreference and its Applications, CorefApp 1999, pp. 77–84 (1999)Google Scholar
  2. 2.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the 2nd Intl. Conf. on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)Google Scholar
  3. 3.
    Hong, Y., Zhang, J., Ma, B., Yao, J., Zhou, G., Zhu, Q.: Using cross-entity inference to improve event extraction. In: Proc. of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, HLT 2011, vol. 1, pp. 1127–1136 (2011)Google Scholar
  4. 4.
    Kim, S.-M., Hovy, E.: Extracting opinions, opinion holders, and topics expressed in online news media text. In: Proc. of the Workshop on Sentiment and Subjectivity in Text, SST 2006, pp. 1–8 (2006)Google Scholar
  5. 5.
    Lin, C.-Y.: Rouge: A package for automatic evaluation of summaries. In: Text Summarization Branches Out: Proc. of the ACL 2004 Workshop, pp. 74–81. Association for Computational Linguistics (2004)Google Scholar
  6. 6.
    Litvak, M., Last, M., Aizenman, H., Gobits, I., Kandel, A.: Degext - a language-independent graph-based keyphrase extractor. In: Proc. of the 7th Atlantic Web Intelligence Conference (AWIC 2011), pp. 121–130 (2011)Google Scholar
  7. 7.
    Mihalcea, R., Tarau, P.: TextRank: Bringing order into texts. In: Proc. of the 2004 Conf. on Empirical Methods in Natural Language Processing, EMNLP 2004 (2004)Google Scholar
  8. 8.
    Sarvabhotla, K., Pingali, P., Varma, V.: Sentiment classification: a lexical similarity based approach for extracting subjectivity in documents. Inf. Retr. 14(3), 337–353 (2011)CrossRefGoogle Scholar
  9. 9.
    Scholz, T., Conrad, S.: Integrating viewpoints into newspaper opinion mining for a media response analysis. In: Proc. of the 11th Conf. on Natural Language Processing, KONVENS 2012 (2012)Google Scholar
  10. 10.
    Scholz, T., Conrad, S., Hillekamps, L.: Opinion mining on a german corpus of a media response analysis. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2012. LNCS, vol. 7499, pp. 39–46. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Scholz, T., Conrad, S., Wolters, I.: Comparing different methods for opinion mining in newspaper articles. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 259–264. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Peter, D.: Turney. Learning algorithms for keyphrase extraction 2(4), 303–336 (2000)MathSciNetGoogle Scholar
  13. 13.
    Wachsmuth, H., Prettenhofer, P., Stein, B.: Efficient statement identification for automatic market forecasting. In: Proc. of the 23rd International Conference on Computational Linguistics, COLING 2010, pp. 1128–1136 (2010)Google Scholar
  14. 14.
    Watson, T., Noble, P.: Evaluating public relations: a best practice guide to public relations planning, research & evaluation. PR in practice series, ch. 6, pp. 107–138. Kogan Page (2007)Google Scholar
  15. 15.
    Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Language Resources and Evaluation 39(2-3), 165–210 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Scholz
    • 1
  • Stefan Conrad
    • 1
  1. 1.Institute of Computer ScienceHeinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations