Skip to main content

Nano-encapsulation of Oligonucleotides for Therapeutic Use

  • Chapter
  • First Online:
Nucleic Acid Nanotechnology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 29))

  • 2643 Accesses

Abstract

Oligonucleotides got more and more into focus for therapeutic purposes. Administration of such molecules is a challenge, as surviving the bloodstream passage and passing the barrier cell membrane are almost insuperable tasks. Although successful clinical studies have been conducted with naked oligonucleotides, such as antisense agents or siRNA, poor cellular uptake and low cellular persistence reveal the need for adequate carriers.

Delivery of the undamaged oligonucleotide to its site of action has been explored with manifold systems. However, these systems all have one aim: protection of the cargo during the bloodstream passage, facilitation of cellular uptake, and, finally, payload release into the cytosol. Size plays also an important role for the physiological pathway, as particles, if their size is suboptimal, may either clog blood vessels, be removed by the reticuloendothelial system, or undergo rapid renal clearance.

Therefore, research in this field takes advantage of natural nucleic acid encapsulation systems (viruses) or aims at mimicking virus-like features with nonviral carriers. This review focuses on the principles of oligonucleotide encapsulation or packaging with different classes of carrier molecules towards therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar S, Benter I (2007) Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 59(2–3):164–182. doi:10.1016/j.addr.2007.03.010

    Article  PubMed  CAS  Google Scholar 

  • Akhtar S, Hughes MD, Khan A, Bibby M, Hussain M, Nawaz Q, Double J, Sayyed P (2000) The delivery of antisense therapeutics. Adv Drug Deliv Rev 44(1):3–21

    Article  PubMed  CAS  Google Scholar 

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7(5):657–663

    Article  PubMed  CAS  Google Scholar 

  • Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569. doi:10.1038/nbt1402

    Article  PubMed  CAS  Google Scholar 

  • Alshamsan A, Hamdy S, Samuel J, El-Kadi AO, Lavasanifar A, Uludag H (2010) The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials 31(6):1420–1428. doi:10.1016/j.biomaterials.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  • Andaloussi SE, Lehto T, Mager I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Said Hassane F, Guterstam P, Suhorutsenko J, Moreno PM, Oskolkov N, Halldin J, Tedebark U, Metspalu A, Lebleu B, Lehtio J, Smith CI, Langel U (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39(9):3972–3987. doi:10.1093/nar/gkq1299

    Article  PubMed  Google Scholar 

  • Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, Yee JK, Rossi J, Zaia J, Akkina R (2007) Safety and efficacy of a lentiviral vector containing three anti-HIV genes – CCR5 ribozyme, tat-rev siRNA, and TAR decoy – in SCID-hu mouse-derived T cells. Mol Ther 15(6):1182–1188. doi:10.1038/sj.mt.6300157, 6300157 [pii]

    PubMed  CAS  Google Scholar 

  • Azad RF, Driver VB, Tanaka K, Crooke RM, Anderson KP (1993) Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37(9):1945–1954

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  • Beyerle A, Braun A, Merkel O, Koch F, Kissel T, Stoeger T (2011) Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. J Control Release 151(1):51–56. doi:10.1016/j.jconrel.2010.12.017

    Article  PubMed  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–7301

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553. doi:10.1126/science.10689991068999 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. doi:10.1016/j.chembiol.2011.12.008

    Article  PubMed  CAS  Google Scholar 

  • Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S, Ali SM, Ahmad MU, Ahmad I (2005) Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 12(3):321–328. doi:10.1038/sj.cgt.7700793

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Jin SE, Lee MK, Lim SJ, Park JS, Kim BG, Ahn WS, Kim CK (2008) Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm 68(3):545–554. doi:10.1016/j.ejpb.2007.07.011

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Lee JY, Suh JS, Kwon YM, Lee SJ, Chung JK, Lee DS, Yang VC, Chung CP, Park YJ (2010) The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31(6):1429–1443. doi:10.1016/j.biomaterials.2009.11.001, S0142-9612(09)01198-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Couto LB, High KA (2010) Viral vector-mediated RNA interference. Curr Opin Pharmacol 10(5):534–542. doi:10.1016/j.coph.2010.06.007

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (1998) Vitravene – another piece in the mosaic. Antisense Nucleic Acid Drug Dev 8(4):vii–viii

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. doi:10.1038/nature08956

    Article  PubMed  CAS  Google Scholar 

  • del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL (2007) Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm 339(1–2):261–268. doi:10.1016/j.ijpharm.2007.03.015

    Article  PubMed  Google Scholar 

  • Devroe E, Silver PA (2004) Therapeutic potential of retroviral RNAi vectors. Expert Opin Biol Ther 4(3):319–327. doi:10.1517/14712598.4.3.319

    Article  PubMed  CAS  Google Scholar 

  • DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2(36):36ra43. doi:10.1126/scitranslmed.3000931

    Article  PubMed  Google Scholar 

  • Dohmen C, Edinger D, Frohlich T, Schreiner L, Lachelt U, Troiber C, Radler J, Hadwiger P, Vornlocher HP, Wagner E (2012) Nanosized multifunctional polyplexes for receptor-mediated SiRNA delivery. ACS Nano 6(6):5198–5208

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  PubMed  CAS  Google Scholar 

  • Epiphanio S, Mikolajczak SA, Goncalves LA, Pamplona A, Portugal S, Albuquerque S, Goldberg M, Rebelo S, Anderson DG, Akinc A, Vornlocher HP, Kappe SH, Soares MP, Mota MM (2008) Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe 3(5):331–338. doi:10.1016/j.chom.2008.04.003

    Article  PubMed  CAS  Google Scholar 

  • Ezzat K, El Andaloussi S, Zaghloul EM, Lehto T, Lindberg S, Moreno PM, Viola JR, Magdy T, Abdo R, Guterstam P, Sillard R, Hammond SM, Wood MJ, Arzumanov AA, Gait MJ, Smith CI, Hallbrink M, Langel U (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39(12):5284–5298. doi:10.1093/nar/gkr072, gkr072 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337(6205):387–388. doi:10.1038/337387a0

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  PubMed  CAS  Google Scholar 

  • Fish RJ, Kruithof EK (2004) Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol 5:9. doi:10.1186/1471-2199-5-9

    Article  PubMed  Google Scholar 

  • Fortune JA, Novobrantseva TI, Klibanov AM (2011) Highly effective gene transfection in vivo by alkylated polyethylenimine. J Drug Deliv 2011:204058. doi:10.1155/2011/204058

    Article  PubMed  Google Scholar 

  • Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105(33):11915–11920. doi:10.1073/pnas.0805434105, 0805434105 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Frohlich T, Edinger D, Klager R, Troiber C, Salcher E, Badgujar N, Martin I, Schaffert D, Cengizeroglu A, Hadwiger P, Vornlocher HP, Wagner E (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 160(3):532–541. doi:10.1016/j.jconrel.2012.03.018

    Article  PubMed  Google Scholar 

  • Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee AC, Judge A, Jeffs LB, MacLachlan I (2006) Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 193(12):1650–1657. doi:10.1086/504267

    Article  PubMed  CAS  Google Scholar 

  • Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, de Jong S, Tavakoli I, Judge A, Hensley LE, Maclachlan I (2010) Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375(9729):1896–1905. doi:10.1016/S0140-6736(10)60357-1

    Article  PubMed  CAS  Google Scholar 

  • Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65(9):3509–3512. doi:10.1158/0008-5472.CAN-05-0298

    Article  PubMed  CAS  Google Scholar 

  • Grillone LR, Lanz R (2001) Fomivirsen. Drugs Today (Barc) 37(4):245–255

    CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541. doi:10.1038/nature04791

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251. doi:10.1038/418244a

    Article  PubMed  CAS  Google Scholar 

  • Hartmann L, Krause E, Antonietti M, Borner HG (2006) Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 7(4):1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Hartmann L, Hafele S, Peschka-Suss R, Antonietti M, Borner HG (2008) Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chemistry 14(7):2025–2033

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139(2):127–132. doi:10.1016/j.jconrel.2009.06.008, S0168-3659(09)00418-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Hollins AJ, Omidi Y, Benter IF, Akhtar S (2007) Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target 15(1):83–88. doi:10.1080/10611860601151860

    Article  PubMed  CAS  Google Scholar 

  • Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J (2009) Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 17(1):162–168. doi:10.1038/mt.2008.220

    Article  PubMed  CAS  Google Scholar 

  • Hughes MD, Hussain M, Nawaz Q, Sayyed P, Akhtar S (2001) The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 6(6):303–315

    Article  PubMed  CAS  Google Scholar 

  • Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65(19):8984–8992. doi:10.1158/0008-5472.CAN-05-0565

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen MR, Haasnoot J, Wengel J, Berkhout B, Kjems J (2007) Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology 4:29. doi:10.1186/1742-4690-4-29

    Article  PubMed  Google Scholar 

  • Kenworthy R, Lambert D, Yang F, Wang N, Chen Z, Zhu H, Zhu F, Liu C, Li K, Tang H (2009) Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res 37(19):6587–6599. doi:10.1093/nar/gkp714, gkp714 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017. doi:10.1016/j.cell.2009.04.021

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Lee SK, Shankar P, Manjunath N (2006) A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 3(4):e96. doi:10.1371/journal.pmed.0030096

    Article  PubMed  Google Scholar 

  • Kwok A, Hart SL (2011) Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 7(2):210–219. doi:10.1016/j.nano.2010.07.005, S1549-9634(10)00239-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kwon EJ, Bergen JM, Pun SH (2008) Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjug Chem 19(4):920–927

    Article  PubMed  CAS  Google Scholar 

  • Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65(15):6910–6918. doi:10.1158/0008-5472.CAN-05-0530

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Mixson AJ (2005) Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 12(8):682–690

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114(1):100–109. doi:10.1016/j.jconrel.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Li J, He F, Wilson A, Pitt B, Li S (2005) Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 330(3):755–759. doi:10.1016/j.bbrc.2005.03.041

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Dohmen C, Mas-Moruno C, Troiber C, Kos P, Schaffert D, Lachelt U, Teixido M, Gunther M, Kessler H, Giralt E, Wagner E (2012) Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem 10(16):3258–3268. doi:10.1039/c2ob06907e

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349. doi:10.1038/nature02873

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E (2008) Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 130(11):3272–3273

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6(3):752–762. doi:10.1021/mp9000124

    Article  PubMed  CAS  Google Scholar 

  • Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, Kato T, Terada M, Ochiya T (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32(13):e109. doi:10.1093/nar/gnh093

    Article  PubMed  Google Scholar 

  • Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41(7):2562–2574

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11(6):990–995

    Article  PubMed  CAS  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007. doi:10.1038/nbt1122

    Article  PubMed  CAS  Google Scholar 

  • Omidi Y, Hollins AJ, Benboubetra M, Drayton R, Benter IF, Akhtar S (2003) Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 11(6):311–323. doi:10.1080/10611860310001636908

    Article  PubMed  CAS  Google Scholar 

  • Omidi Y, Hollins AJ, Drayton RM, Akhtar S (2005) Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target 13(7):431–443. doi:10.1080/10611860500418881

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958. doi:10.1101/gad.981002

    Article  PubMed  CAS  Google Scholar 

  • Pal A, Ahmad A, Khan S, Sakabe I, Zhang C, Kasid UN, Ahmad I (2005) Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol 26(4):1087–1091

    PubMed  CAS  Google Scholar 

  • Pan X, Chen L, Liu S, Yang X, Gao JX, Lee RJ (2009) Antitumor activity of G3139 lipid nanoparticles (LNPs). Mol Pharm 6(1):211–220. doi:10.1021/mp800146j

    Article  PubMed  CAS  Google Scholar 

  • Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630

    Article  PubMed  CAS  Google Scholar 

  • Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C (2006) Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17(10):1019–1026. doi:10.1089/hum.2006.17.1019

    Article  PubMed  CAS  Google Scholar 

  • Ravina M, Paolicelli P, Seijo B, Sanchez A (2010) Knocking down gene expression with dendritic vectors. Mini Rev Med Chem 10(1):73–86

    Article  PubMed  CAS  Google Scholar 

  • Salcher EE, Kos P, Frohlich T, Badgujar N, Scheible M, Wagner E (2012) Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J Control Release 164(3):380–386

    Article  PubMed  CAS  Google Scholar 

  • Saw PE, Ko YT, Jon S (2010) Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromol Rapid commun 31(13):1155–1162. doi:10.1002/marc.200900861

    Article  PubMed  CAS  Google Scholar 

  • Schaffert D, Badgujar N, Wagner E (2011a) Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Org Lett 13(7):1586–1589. doi:10.1021/ol200381z

    Article  PubMed  CAS  Google Scholar 

  • Schaffert D, Kiss M, Rodl W, Shir A, Levitzki A, Ogris M, Wagner E (2011b) Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharm Res 28(4):731–741. doi:10.1007/s11095-010-0225-4

    Article  PubMed  CAS  Google Scholar 

  • Schaffert D, Troiber C, Salcher EE, Frohlich T, Martin I, Badgujar N, Dohmen C, Edinger D, Klager R, Maiwald G, Farkasova K, Seeber S, Jahn-Hofmann K, Hadwiger P, Wagner E (2011c) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl 50(38):8986–8989. doi:10.1002/anie.201102165

    Article  PubMed  CAS  Google Scholar 

  • Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161(2):554–565. doi:10.1016/j.jconrel.2011.11.014, S0168-3659(11)01044-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176. doi:10.1038/nbt.1602

    Article  PubMed  CAS  Google Scholar 

  • Shi SJ, Zhong ZR, Liu J, Zhang ZR, Sun X, Gong T (2012) Solid lipid nanoparticles loaded with anti-microRNA oligonucleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharm Res 29(1):97–109. doi:10.1007/s11095-011-0514-6

    Article  PubMed  CAS  Google Scholar 

  • Sliva K, Schnierle BS (2010) Selective gene silencing by viral delivery of short hairpin RNA. Virol J 7:248. doi:10.1186/1743-422X-7-248

    Article  PubMed  Google Scholar 

  • Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K, Ohgi T, Yano J (2008) Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 68(21):8843–8851. doi:10.1158/0008-5472.CAN-08-0127, 68/21/8843 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sun A, Tang J, Terranova PF, Zhang X, Thrasher JB, Li B (2010) Adeno-associated virus-delivered short hairpin-structured RNA for androgen receptor gene silencing induces tumor eradication of prostate cancer xenografts in nude mice: a preclinical study. Int J Cancer 126(3):764–774. doi:10.1002/ijc.24778

    Article  PubMed  CAS  Google Scholar 

  • Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A, Moghimi SM (2005) Low and high molecular weight poly(L-lysine)s/poly(L-lysine)-DNA complexes initiate mitochondrial-mediated apoptosis differently. FEBS Lett 579(27):6191–6198. doi:10.1016/j.febslet.2005.09.092, S0014-5793(05)01237-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64(10):3365–3370. doi:10.1158/0008-5472.CAN-03-2682

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA 102(16):5679–5684. doi:10.1073/pnas.0502067102, 0502067102 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tomanin R, Scarpa M (2004) Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther 4(4):357–372

    Article  PubMed  CAS  Google Scholar 

  • Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, Smith NB, Robertson GP (2008) Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res 68(18):7638–7649. doi:10.1158/0008-5472.CAN-07-6614

    Article  PubMed  CAS  Google Scholar 

  • Tsai LR, Chen MH, Chien CT, Chen MK, Lin FS, Lin KM, Hwu YK, Yang CS, Lin SY (2011) A single-monomer derived linear-like PEI-co-PEG for siRNA delivery and silencing. Biomaterials 32(14):3647–3653. doi:10.1016/j.biomaterials.2011.01.059

    Article  PubMed  CAS  Google Scholar 

  • Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45(7):1005–1013. doi:10.1021/ar2002232

    Article  PubMed  CAS  Google Scholar 

  • Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8):816–820. doi:10.1038/nm1076

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N, Chen Y, Lee YJ, Unno T, Nishina K, Iwasaki Y, Maki N, Mizusawa H, Akari H (2007) Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun 361(2):294–300. doi:10.1016/j.bbrc.2007.06.182

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75(1):280–284

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524. doi:10.1126/science.1111444

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114. doi:10.1038/nature04688

    Article  PubMed  CAS  Google Scholar 

  • Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19(7):1448–1455. doi:10.1021/bc800065f

    Article  PubMed  CAS  Google Scholar 

  • zur Muhlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery – drug release and release mechanism. Eur J Pharm Biopharm 45(2):149–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Edith Salcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salcher, E.E., Wagner, E. (2014). Nano-encapsulation of Oligonucleotides for Therapeutic Use. In: Kjems, J., Ferapontova, E., Gothelf, K. (eds) Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38815-6_9

Download citation

Publish with us

Policies and ethics