Skip to main content

DNA Nanotechnology: From Biology and Beyond

  • Chapter
  • First Online:
Nucleic Acid Nanotechnology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 29))

Abstract

Over the past three decades, tremendous progress has been made in our understanding of how to use DNA molecules to design and construct intricate nanostructures and nanodevices and how to use these nanoconstructs as versatile tools to functionally arrange a variety of molecules and moieties with nanometer spatial resolution. This chapter summarizes recent development in DNA nanotechnology and addresses its potential applications in drug delivery, analysis and diagnosis, electronics, and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

aTAM:

abstract Tile Assembly Model

ATP:

Adenosine triphosphate

CHA:

Catalyzed hairpin assembly

CpG:

Cytosine-phosphate-guanine

DX:

Double crossover

FRET:

Fluorescence resonance energy transfer

GMP:

Good manufacturing practice

GOx:

Glucose oxidase

HB:

Helix bundle

HCR:

Hybridization chain reaction

HRP:

Horseradish peroxidase

IHF:

Integration host factor

JX2 :

A topoisomer of PX molecule, one end of JX2 rotates 180° relative to the PX molecule, producing two juxtaposed duplexes without crossovers in the middle

kTAM:

kinetic Tile Assembly Model

LAMP:

Loop-mediated isothermal amplification

OLED:

Organic light-emitting diodes

PDGF:

Platelet-derived growth factor

PX:

Paranemic crossover

ssDNA:

Single-stranded DNA

SST:

Single-stranded tile

STV:

Streptavidin

TLR9:

Toll-like receptor 9

TX:

Triple crossover

References

  • Aldaye FA, Sleiman HF (2006) Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew Chem Int Ed 45:2204–2209

    CAS  Google Scholar 

  • Allen PB, Arshad SA, Li B, Chen X, Ellington AD (2012) DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip 12:2951–2958

    PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    PubMed  CAS  Google Scholar 

  • Barish RD, Schulman R, Rothemund PWK, Winfree E (2009) An information-bearing seed for nucleating algorithmic self-assembly. Proc Natl Acad Sci USA 106:6054–6059

    PubMed  CAS  Google Scholar 

  • Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44:4358–4361

    CAS  Google Scholar 

  • Bath J, Green SJ, Allen KE, Turberfield AJ (2009) Mechanism for a directional, processive, and reversible DNA motor. Small 5:1513–1516

    PubMed  CAS  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    PubMed  CAS  Google Scholar 

  • Birac JJ, Sherman WB, Kopatsch J, Constantinou PE, Seeman NC (2006) Architecture with GIDEON, a program for design in structural DNA nanotechnology. J Mol Graph Model 25:470–480

    PubMed  CAS  Google Scholar 

  • Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–518

    PubMed  CAS  Google Scholar 

  • Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308–312

    PubMed  CAS  Google Scholar 

  • Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C, Milligan RA, Vale RD, Gibbons IR (2008) Structure and functional role of dynein’s microtubule-binding domain. Science 322:1691–1695

    PubMed  CAS  Google Scholar 

  • Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229

    PubMed  CAS  Google Scholar 

  • Chakraborty B (2008) Putting DNA to work as nanomechanical, computing and diagnostic devices. Dissertation, New York University

    Google Scholar 

  • Chakraborty B, Sha R, Seeman NC (2008) A DNA-based nanomechanical device with three robust states. Proc Natl Acad Sci USA 105:17245–17249

    PubMed  CAS  Google Scholar 

  • Chang M, Yang CS, Huang DM (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5:6156–6163

    PubMed  CAS  Google Scholar 

  • Chen H, Doty D (2012) Parallelism and time in hierarchical self-assembly. In: SODA 2012: Proceedings of the 23rd annual ACM-SIAM symposium on discrete algorithms, pp 1163–1182

    Google Scholar 

  • Chen H, Goel A (2004) Error free self-assembly using error prone tiles. In: Proceedings of the 10th international meeting on DNA based computers, pp 62–75

    Google Scholar 

  • Chen H, Kao M (2011) Optimizing tile concentrations to minimize errors and time for DNA tile self-assembly systems. In: Sakakibara Y, Mi Y (eds) DNA computing and molecular programming, vol 6518, Lecture notes in computer science. Springer, Heidelberg, pp 13–14

    Google Scholar 

  • Chen J, Seeman NC (1991) The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633

    PubMed  CAS  Google Scholar 

  • Chen H, Schulman R, Goel A, Winfree E (2007) Reducing facet nucleation during algorithmic self-assembly. Nano Lett 7:2913–2919

    PubMed  CAS  Google Scholar 

  • Chen H, Doty D, Seki S (2011) Program size and temperature in self-assembly. In: Asano T, Nakano S, Okamoto Y, Watanabe O (eds) Algorithms and computation, vol 7074, Lecture notes in computer science. Springer, Heidelberg, pp 445–453

    Google Scholar 

  • Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6:978–983

    PubMed  CAS  Google Scholar 

  • Chhabra R, Sharma J, Ke Y, Liu Y, Rinker S, Lindsay S, Yan H (2007) Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J Am Chem Soc 129:10304–10305

    PubMed  CAS  Google Scholar 

  • Choi HM, Chang JY, le Trinh A, Padilla JE, Fraser SE, Pierce NA (2010) Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28:1208–1212

    PubMed  CAS  Google Scholar 

  • Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    PubMed  CAS  Google Scholar 

  • Cohen SN, Chang ACY, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244

    PubMed  CAS  Google Scholar 

  • Conrado RJ, Wu GC, Boock JT, Xu HS, Chen SY, Lebar T, Turnsek J, Tomsic N, Avbelj M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Bencina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa MP (2012) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889

    PubMed  CAS  Google Scholar 

  • Constantinou P, Wong T, Kopatsch J, Israel LB, Mao C, Ding B, Sha R, Zhang X, Yang X, Seeman NC (2006) Double cohesion in structural DNA nanotechnology. Org Biomol Chem 4:3414–3419

    PubMed  CAS  Google Scholar 

  • Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    PubMed  CAS  Google Scholar 

  • Deng ZX, Mao CD (2003) DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett 3:1545–1548

    CAS  Google Scholar 

  • Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    PubMed  CAS  Google Scholar 

  • Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314:1583–1585

    PubMed  CAS  Google Scholar 

  • Ding B, Sha R, Seeman NC (2004) Pseudohexagonal 2D DNA crystals from double crossover cohesion. J Am Chem Soc 126:10230–10231

    PubMed  CAS  Google Scholar 

  • Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132:3248–3249

    PubMed  CAS  Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101:15275–15278

    PubMed  CAS  Google Scholar 

  • Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104:6644–6648

    PubMed  CAS  Google Scholar 

  • Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    PubMed  CAS  Google Scholar 

  • Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    PubMed  CAS  Google Scholar 

  • Drexler KE (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA 79:5275–5278

    Google Scholar 

  • Drexler KE, Peterson C (1989) Nanotechnology and enabling technologies. Foresight Institute. http://www.foresight.org/updates/Briefing2.html. Accessed 20 Sept 2012

  • Duckworth BP, Chen Y, Wollack JW, Sham Y, Mueller JD, Taton TA, Distefano MD (2007) A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. Angew Chem Int Ed 46:8819–8822

    CAS  Google Scholar 

  • Dutta PK, Varghese R, Nangreave J, Lin S, Yan H, Liu Y (2011) DNA-directed artificial light-harvesting antenna. J Am Chem Soc 133:11985–11993

    PubMed  CAS  Google Scholar 

  • Endo M, Hidaka K, Kato T, Namba K, Sugiyama H (2009) DNA prism structures constructed by folding of multiple rectangular arms. J Am Chem Soc 131:15570–15571

    PubMed  CAS  Google Scholar 

  • Erben CM, Goodman RP, Turberfield AJ (2006) Single molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed 45:7414–7417

    CAS  Google Scholar 

  • Erben CM, Goodman RP, Turberfield AJ (2007) A self-assembled DNA bipyramid. J Am Chem Soc 129:6992–6993

    PubMed  CAS  Google Scholar 

  • Erkelenz M, Kuo CH, Niemeyer CM (2011) DNA-mediated assembly of cytochrome P450 BM3 subdomains. J Am Chem Soc 133:16111–16118

    PubMed  CAS  Google Scholar 

  • Fahrner KA, Ryu WS, Berg HC (2003) Biomechanics: bacterial flagellar switching under load. Nature 423:938

    PubMed  CAS  Google Scholar 

  • Feng L, Park SH, Reif JH, Yan H (2003) A two-state DNA lattice switched by DNA nanoactuator. Angew Chem Int Ed 42:4342–4346

    CAS  Google Scholar 

  • Fu TJ, Seeman NC (1993) DNA double crossover structures. Biochemistry 32:3211–3220

    PubMed  CAS  Google Scholar 

  • Fu J, Liu M, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    PubMed  CAS  Google Scholar 

  • Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2008) Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett 8:1791–1797

    PubMed  CAS  Google Scholar 

  • Fyfe MCT, Stoddart JF (1997) Synthetic supramolecular chemistry. Acc Chem Res 30:393–401

    CAS  Google Scholar 

  • Garibotti AV, Knudsen SM, Ellington AD, Seeman NC (2006) Functional DNAzymes organized into 2D arrays. Nano Lett 6:1505–1507

    PubMed  CAS  Google Scholar 

  • Gartner ZJ, Kanan MW, Liu DR (2002) Multistep small-molecule synthesis programmed by DNA templates. J Am Chem Soc 124:10304–10306

    PubMed  CAS  Google Scholar 

  • Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965

    PubMed  CAS  Google Scholar 

  • Gierer A (1966) Model for DNA and protein interactions and the function of the operator. Nature 212:1480–1481

    PubMed  CAS  Google Scholar 

  • Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks form molecular fabrication. Science 310:1661–1664

    PubMed  CAS  Google Scholar 

  • Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101

    PubMed  CAS  Google Scholar 

  • Gu H, Chao J, Xiao S, Seeman NC (2010a) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    PubMed  CAS  Google Scholar 

  • Gu H, Yang W, Seeman NC (2010b) DNA scissors device used to measure MutS binding to DNA mis-pairs. J Am Chem Soc 132:4352–4357

    PubMed  CAS  Google Scholar 

  • Guan J, Lee LJ (2005) Generating highly ordered DNA nanostrand arrays. Proc Natl Acad Sci USA 102:18321–18325

    PubMed  CAS  Google Scholar 

  • Hagen JA, Li W, Steckl AJ, Grote JG (2006) Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88:171109

    Google Scholar 

  • Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    PubMed  CAS  Google Scholar 

  • He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5:778–782

    PubMed  CAS  Google Scholar 

  • He Y, Tian Y, Chen Y, Deng ZX, Ribbe AE, Mao C (2005a) Sequence symmetry as a tool for designing DNA nanostructures. Angew Chem Int Ed 44:6694–6696

    CAS  Google Scholar 

  • He Y, Chen Y, Liu H, Ribbe AE, Mao C (2005b) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127:12202–12203

    PubMed  CAS  Google Scholar 

  • He Y, Tian Y, Ribbe AE, Mao C (2006) Highly connected two-dimensional crystals of DNA six-point-stars. J Am Chem Soc 128:15978–15979

    PubMed  CAS  Google Scholar 

  • He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    PubMed  CAS  Google Scholar 

  • Heber U, Heldt HW (1981) The chloroplast envelope: structure, function, and role in leaf metabolism. Annu Rev Plant Physiol 32:139–168

    CAS  Google Scholar 

  • Heemstra JM, Liu DR (2009) Templated synthesis of peptide nucleic acids via sequence-selective base-filling reactions. J Am Chem Soc 131:11347–11349

    PubMed  CAS  Google Scholar 

  • Hidalgo E, Demple B (1994) An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J 13:138–146

    PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K Jr (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    PubMed  CAS  Google Scholar 

  • Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang ZG, Zou G, Liang X, Yan H, Ding B (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134:13396–13403

    PubMed  CAS  Google Scholar 

  • Kallenbach NR, Ma R-I, Seeman NC (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305:829–831

    CAS  Google Scholar 

  • Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H (2009a) Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett 9:2445–2447

    PubMed  CAS  Google Scholar 

  • Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih WM, Yan H (2009b) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131:15903–15908

    PubMed  CAS  Google Scholar 

  • Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E (2002) Sequence-specific molecular lithography on single DNA molecules. Science 297:72–75

    PubMed  CAS  Google Scholar 

  • Kershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR, Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PWK, Wallraff GM (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol 4:557–561

    PubMed  CAS  Google Scholar 

  • Keum JW, Bermudez H (2009) Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem Commun 7:7036–7038

    Google Scholar 

  • Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400

    PubMed  CAS  Google Scholar 

  • Ko S, Liu H, Chen Y, Mao C (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043

    PubMed  CAS  Google Scholar 

  • Kosuri S, Eroshenko N, LeProust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Nanotechnol 28:1295–1299

    CAS  Google Scholar 

  • Kuzuya A, Komiyama M (2009) Design and construction of a box-shaped 3D-DNA origami. Chem Commun 28:4182–4184

    Google Scholar 

  • Kuzuya A, Wang R, Sha R, Seeman NC (2007) Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett 7:1757–1763

    PubMed  CAS  Google Scholar 

  • Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat Commun 2:449

    PubMed  Google Scholar 

  • Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Hogele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    PubMed  CAS  Google Scholar 

  • LaBean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122:1848–1860

    CAS  Google Scholar 

  • Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett 4:2343–2347

    CAS  Google Scholar 

  • Lee CC, Snyder TM, Quake SR (2010) A microfluidic oligonucleotide synthesizer. Nucleic Acids Res 38:2514–2521

    PubMed  CAS  Google Scholar 

  • Lee KW, Kim KM, Lee J, Amin R, Kim B, Park SK, Lee SK, Park SH, Kim HJ (2011) A two-dimensional DNA lattice implanted polymer solar cell. Nanotechnology 22:375202

    PubMed  Google Scholar 

  • Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    PubMed  CAS  Google Scholar 

  • Lehn J-M (1990) Perspectives in supramolecular chemistry – from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Google Scholar 

  • Lehn J-M (2002) Supramolecular chemistry and self-assembly special feature: toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci USA 99:4763–4768

    PubMed  CAS  Google Scholar 

  • Li H, LaBean TH, Kenan DJ (2006) Single-chain antibodies against DNA aptamers for use as adapter molecules on DNA tile arrays in nanoscale materials organization. Org Biomol Chem 4:3420–3426

    PubMed  CAS  Google Scholar 

  • Li Z, Wei B, Nangreave J, Lin C, Liu Y, Mi Y, Yan H (2009) A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J Am Chem Soc 131:13093–13098

    PubMed  CAS  Google Scholar 

  • Li B, Ellington AD, Chen X (2011a) Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res 39:e110

    PubMed  CAS  Google Scholar 

  • Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C (2011b) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789

    PubMed  CAS  Google Scholar 

  • Li B, Chen X, Ellington AD (2012) Adapting enzyme-free DNA circuits to the detection of loop mediated isothermal amplification reactions. Anal Chem. doi:10.1021/ac301944v

    Google Scholar 

  • Liao S, Seeman NC (2004) Translation of DNA signals into polymer assembly instructions. Science 306:2072–2074

    PubMed  CAS  Google Scholar 

  • Lin C, Katilius E, Liu Y, Zhang J, Yan H (2006) Self-assembled signaling aptamer DNA arrays for protein detection. Angew Chem Int Ed 45:5296–5301

    CAS  Google Scholar 

  • Lin C, Rinker S, Wang X, Liu Y, Seeman NC, Yan H (2008) In vivo cloning of artificial DNA nanostructures. Proc Natl Acad Sci USA 105:17626–17631

    PubMed  CAS  Google Scholar 

  • Lin C, Jungmann R, Leifer AM, Li C, Levner D, Church GM, Shih WM, Yin P (2012) Sub-micrometer geometrically encoded fluorescent barcodes self-assembled from DNA. Nat Chem 4(10):832–839

    PubMed  CAS  Google Scholar 

  • Liu B, Leontis NB, Seeman NC (1994) Bulged three-arm DNA branched junctions as components for nanoconstruction. Nanobiology 3:177–188

    CAS  Google Scholar 

  • Liu F, Sha R, Seeman NC (1999) Modifying the surface features of two-dimensional DNA crystals. J Am Chem Soc 121:917–922

    CAS  Google Scholar 

  • Liu D, Wang M, Deng Z, Walulu R, Mao C (2004a) Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 126:2324–2325

    PubMed  CAS  Google Scholar 

  • Liu D, Park SH, Reif JH, LaBean TH (2004b) DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc Natl Acad Sci USA 101:717–722

    PubMed  CAS  Google Scholar 

  • Liu L, Guo L, Liu C, Zhang X, Jiang Y (2005a) Intramolecular charge transfer with 1-naphthanilides and 2-naphthanilides. Chin J Chem 23:857–864

    CAS  Google Scholar 

  • Liu Y, Ke Y, Yan H (2005b) Self-assembly of symmetric finite-size DNA nanoarrays. J Am Chem Soc 127:17140–17141

    PubMed  CAS  Google Scholar 

  • Liu Y, Lin C, Li H, Yan H (2005c) Aptamer directed self-assembly of proteins on a DNA nanostructure. Angew Chem Int Ed 44:4333–4338

    CAS  Google Scholar 

  • Liu H, Chen Y, Yu H, Ribbe AE, Mao C (2006a) Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew Chem Int Ed 45:1942–1945

    CAS  Google Scholar 

  • Liu Y, Ding L, Sha R, Canary JW, Seeman NC (2006b) Templated synthesis and properties study of nylon-DNA. PMSE Preprints 95:792

    CAS  Google Scholar 

  • Liu W, Wang X, Wang T, Sha R, Seeman NC (2008) PX DNA triangle oligomerized using a novel three-domain motif. Nano Lett 8:317–322

    PubMed  CAS  Google Scholar 

  • Liu C, Jonoska N, Seeman NC (2009) Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett 9:2641–2647

    PubMed  CAS  Google Scholar 

  • Liu X, Yan H, Liu Y, Chang Y (2011) Targeted cell-cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 7:1673–1682

    PubMed  CAS  Google Scholar 

  • Liu C, Kim E, Demple B, Seeman NC (2012a) A DNA-based nanomechanical device used to characterize the distortion of DNA by Apo-SoxR protein. Biochemistry 51:937–943

    PubMed  CAS  Google Scholar 

  • Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y (2012b) A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett 12:4254–4259

    PubMed  CAS  Google Scholar 

  • Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    PubMed  CAS  Google Scholar 

  • Ma R-I, Kallenbach NR, Sheardy RD, Petrillo ML, Seeman NC (1986) Three arm nucleic acid junctions are flexible. Nucleic Acids Res 14:9745–9753

    PubMed  CAS  Google Scholar 

  • Malo J, Mitchell JC, Vénien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ (2005) Engineering a 2D protein-DNA crystal. Angew Chem Int Ed 44:3057–3061

    CAS  Google Scholar 

  • Mao C, Sun W, Seeman NC (1997) Assembly of Borromean rings from DNA. Nature 386:137–138

    PubMed  CAS  Google Scholar 

  • Mao C, Sun W, Shen Z, Seeman NC (1999a) A DNA nanomechanical device based on the B-Z transition. Nature 397:144–146

    PubMed  CAS  Google Scholar 

  • Mao C, Sun W, Seeman NC (1999b) Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J Am Chem Soc 121:5437–5443

    CAS  Google Scholar 

  • Mao C, LaBean T, Reif JH, Seeman NC (2000) Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407:493–496

    PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik K (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    PubMed  CAS  Google Scholar 

  • Mathieu F, Liao S, Kopatscht J, Wang T, Mao C, Seeman NC (2005) Six-helix bundles designed from DNA. Nano Lett 5:661–665

    PubMed  CAS  Google Scholar 

  • Maune HT, Han S-P, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    PubMed  CAS  Google Scholar 

  • McConnell I, Li G, Brudvig GW (2010) Energy conversion in natural and artificial photosynthesis. Chem Biol 17:434–447

    PubMed  CAS  Google Scholar 

  • McHale R, Patterson JP, Zetterlund PB, O’Reilly RK (2012) Biomimetic radical polymerization via cooperative assembly of segregating templates. Nat Chem 4:491–497

    PubMed  CAS  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseke MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    PubMed  CAS  Google Scholar 

  • Mei Q, Wei X, Su F, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482

    PubMed  CAS  Google Scholar 

  • Mermall V, Post PL, Mark S, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279:527–533

    PubMed  CAS  Google Scholar 

  • Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan YA (2009) DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4:325–330

    PubMed  CAS  Google Scholar 

  • Muser SE, Paukstelis PJ (2012) Three-dimensional DNA crystals with pH-responsive noncanonical junctions. J Am Chem Soc 134:12557–12564

    PubMed  CAS  Google Scholar 

  • Niemeyer CM, Koehler J, Wuerdemann C (2002) DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem 3:242–245

    PubMed  CAS  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    PubMed  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    PubMed  CAS  Google Scholar 

  • Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA brownian motor with coordinated legs. Science 324:67–71

    PubMed  CAS  Google Scholar 

  • Pal S, Deng Z, Ding B, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49:2700–2704

    CAS  Google Scholar 

  • Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H (2005) Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett 5:729–733

    PubMed  CAS  Google Scholar 

  • Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed 45:735–739

    CAS  Google Scholar 

  • Paukstelis PJ (2006) Three-dimensional DNA crystals as molecular sieves. J Am Chem Soc 128:6794–6795

    PubMed  CAS  Google Scholar 

  • Paukstelis PJ, Nowakowski J, Birktoft JJ, Seeman NC (2004) Crystal structure of a continuous three-dimensional DNA lattice. Chem Biol 11:1119–1126

    PubMed  CAS  Google Scholar 

  • Pei R, Taylor SK, Stefanovic D, Rudchenko S, Mitchell TE, Stojanovic MN (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128:12693–12699

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    CAS  Google Scholar 

  • Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2005) Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett 5:2399–2402

    PubMed  CAS  Google Scholar 

  • Rice PA, Yang SW, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:1295–1306

    PubMed  CAS  Google Scholar 

  • Rich A, Nordheim A, Wang AH-J (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53:791–846

    PubMed  CAS  Google Scholar 

  • Rinker S, Ke Y, Liu Y, Chhabra R, Yan H (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3:418–422

    PubMed  CAS  Google Scholar 

  • Robinson BH, Seeman NC (1987) The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng 1:295–300

    PubMed  CAS  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    PubMed  CAS  Google Scholar 

  • Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2:2041–2053

    CAS  Google Scholar 

  • Schuller VJ, Heidegger S, Sandholzer N, Nickels PC, Suhartha NA, Endres S, Bourquin C, Liedl T (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702

    PubMed  Google Scholar 

  • Schulman R, Winfree E (2004) Programmable control of nucleation for algorithmic self-assembly. In: Proceedings of the 10th international meeting on DNA based computers, pp 319–328

    Google Scholar 

  • Schulman R, Winfree E (2007) Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc Natl Acad Sci USA 104:15236–15241

    PubMed  CAS  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    PubMed  CAS  Google Scholar 

  • Seeman NC (1990) De novo design of sequences for nucleic acid structure engineering. J Biomol Struct Dyn 8:573–581

    PubMed  CAS  Google Scholar 

  • Seeman NC (1991) The use of branched DNA for nanoscale fabrication. Nanotechnology 2:149–159

    Google Scholar 

  • Seeman NC (1999) DNA engineering and its application to nanotechnology. Trends Biotechnol 17:437–443

    PubMed  CAS  Google Scholar 

  • Seeman NC (2001) DNA nicks and nodes and nanotechnology. Nano Lett 1:22–26

    CAS  Google Scholar 

  • Seeman NC (2003) Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry 42:7259–7269

    PubMed  CAS  Google Scholar 

  • Seeman NC, Kallenbach NR (1983) Design of immobile nucleic-acid junctions. Biophys J 44:201–209

    PubMed  CAS  Google Scholar 

  • Selmi DN, Adamson RJ, Attrill H, Goddard AD, Gilbert RC, Watts A, Turberfield AJ (2011) DNA-templated protein arrays for single-molecule imaging. Nano Lett 11:657–660

    PubMed  CAS  Google Scholar 

  • Sha R, Liu F, Millar DP, Seeman NC (2000) Atomic force microscopy of parallel DNA branched junction arrays. Chem Biol 7:743–751

    PubMed  CAS  Google Scholar 

  • Sha R, Liu F, Seeman NC (2002) Atomic force measurement of the interdomain angle in symmetric Holliday junctions. Biochemistry 41:5950–5955

    PubMed  CAS  Google Scholar 

  • Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323:112–116

    PubMed  CAS  Google Scholar 

  • Shen Z (1999) DNA poly-crossover molecules and their applications in homology recognition. Dissertation, New York University

    Google Scholar 

  • Shen WQ, Bruist MF, Goodman SD, Seeman NC (2004) A protein-driven DNA device that measures the excess binding energy of proteins that distort DNA. Angew Chem Int Ed 43:4750–4752

    CAS  Google Scholar 

  • Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, Ding B (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134:146–149

    PubMed  CAS  Google Scholar 

  • Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    CAS  Google Scholar 

  • Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    PubMed  CAS  Google Scholar 

  • Shin J-S, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835

    PubMed  CAS  Google Scholar 

  • Slinker JD, Muren NB, Renfrew SE, Barton JK (2011) DNA charge transport over 34 nm. Nat Chem 3:228–233

    PubMed  CAS  Google Scholar 

  • Soloveichik D, Cook M, Winfree E (2008) Combining self-healing and proofreading in self-assembly. Nat Comput 7:203–218

    Google Scholar 

  • Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    PubMed  CAS  Google Scholar 

  • Stein IH, Steinhauer C, Tinnefeld P (2011) Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. J Am Chem Soc 133:4193–4195

    PubMed  CAS  Google Scholar 

  • Steinhauer C, Jungmann R, Sobey TL, Simmel FC, Tinnefeld P (2009) DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew Chem Int Ed 48:8870–8873

    CAS  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    PubMed  CAS  Google Scholar 

  • Tian Y, He Y, Chen Y, Yin P, Mao C (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44:4355–4358

    CAS  Google Scholar 

  • Tian J, Ma K, Saaem I (2009) Advancing high-throughput gene synthesis technology. Mol Biosyst 5:714–722

    PubMed  CAS  Google Scholar 

  • Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490

    PubMed  CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox review for intracellular transport. Cell 112:467–480

    PubMed  CAS  Google Scholar 

  • Venkataraman S, Dirks RM, Rothemund PWK, Winfree E, Pierce NA (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494

    PubMed  Google Scholar 

  • Walsh AS, Yin H, Erben CM, Wood MJ, Turberfield AJ (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    PubMed  CAS  Google Scholar 

  • Wang H (1961) Proving theorems by pattern recognition II. Bell Syst Tech J 40:1–42

    Google Scholar 

  • Wang H (1962) An unsolvable problem on dominoes. Technical report BL-30 (II-15). Harvard Computation Laboratory, Cambridge, MA

    Google Scholar 

  • Wang T (2007) Structural DNA nanotechnology design and self-assembly of two-dimensional and three-dimensional crystalline lattices. Dissertation, New York University

    Google Scholar 

  • Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282

    PubMed  CAS  Google Scholar 

  • Wang X, Seeman NC (2007) The assembly and characterization of 8-arm and 12-arm DNA branched junctions. J Am Chem Soc 129:8169–8176

    PubMed  CAS  Google Scholar 

  • Wang Y, Mueller JE, Kemper B, Seeman NC (1991) The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30:5667–5674

    PubMed  CAS  Google Scholar 

  • Wang R, Liu W, Seeman NC (2009) Prototyping nanorod control: a DNA double helix sheathed within a DNA six-helix bundle. Chem Biol 16:862–867

    PubMed  CAS  Google Scholar 

  • Wang F, Elbaz J, Orbach R, Magen N, Willner I (2011) Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J Am Chem Soc 133:17149–17151

    PubMed  CAS  Google Scholar 

  • Wasielewski MR (2009) Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res 42:1910–1921

    PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acid; a structure for deoxyribose nucleic acid. Nature 171:737–738

    PubMed  CAS  Google Scholar 

  • Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626

    PubMed  CAS  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    PubMed  CAS  Google Scholar 

  • Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    PubMed  CAS  Google Scholar 

  • Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254

    PubMed  CAS  Google Scholar 

  • Winfree E (1996) On the computational power of DNA annealing and ligation. In: Lipton RJ, Baum EB (eds) DNA-based computers. American Mathematical Society, Providence, RI, pp 199–221

    Google Scholar 

  • Winfree E (1998) Simulations of computing by self-assembly. Technical report CSTR: 1998.22. California Institute of Technology, Pasadena, CA

    Google Scholar 

  • Winfree E (2000) Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. J Biomol Struct Dyn 17(Suppl 1):263–270

    PubMed  Google Scholar 

  • Winfree E (2006) Self-healing tile sets. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation, Natural computing series. Springer, Heidelberg, pp 55–78

    Google Scholar 

  • Winfree E, Bekbolatov R (2004) Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen J, Reif J (eds) DNA computing and molecular programming, vol 2943, Lecture notes in computer science. Springer, Heidelberg, pp 126–144

    Google Scholar 

  • Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    PubMed  CAS  Google Scholar 

  • Xiao S, Liu F, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4:313–317

    CAS  Google Scholar 

  • Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65

    PubMed  CAS  Google Scholar 

  • Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003a) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    PubMed  CAS  Google Scholar 

  • Yan H, LaBean TH, Feng L, Reif JH (2003b) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100:8103–8108

    PubMed  CAS  Google Scholar 

  • Yang X, Vologodskii AV, Liu B, Kemper B, Seeman NC (1998a) Torsional control of double stranded DNA branch migration. Biopolymers 45:69–83

    PubMed  CAS  Google Scholar 

  • Yang X, Wenzler LA, Qi J, Li X, Seeman NC (1998b) Ligation of DNA triangles containing double crossover molecules. J Am Chem Soc 120:9779–9786

    CAS  Google Scholar 

  • Yang Y, Han D, Nangreave J, Liu Y, Yan H (2012) DNA origami with double-stranded DNA as a unified scaffold. ACS Nano. doi:10.1021/nn302896c

    Google Scholar 

  • Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    PubMed  CAS  Google Scholar 

  • Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43:4906–4911

    CAS  Google Scholar 

  • Yin P, Choi HM, Calvert CR, Pierce NA (2008a) Programming biomolecular self-assembly pathways. Nature 451:318–322

    PubMed  CAS  Google Scholar 

  • Yin P, Hariadi RF, Sahu S, Choi HM, Park SH, Labean TH, Reif JH (2008b) Programming DNA tube circumferences. Science 321:824–826

    PubMed  CAS  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Newmann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    PubMed  CAS  Google Scholar 

  • Zhang Y, Seeman NC (1994) The construction of a DNA truncated octahedron. J Am Chem Soc 116:1661–1669

    CAS  Google Scholar 

  • Zhang X, Liu C, Liu L, Wu F, Guo L, Sun X, Wang C, Jiang Y (2003) Intramolecular charge transfer with N-benzoylaminonaphthalenes. 1-Aminonaphthalene versus 2-aminonaphthalene as electron donors. Org Biomol Chem 1:728–732

    PubMed  CAS  Google Scholar 

  • Zhang J, Liu Y, Ke Y, Yan H (2006) Periodic squarelike gold nanoparticle arrays template by self-assembled 2D DNA nanogrids on a surface. Nano Lett 6:248–251

    PubMed  CAS  Google Scholar 

  • Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    PubMed  CAS  Google Scholar 

  • Zhang C, He Y, Su M, Ko SH, Ye T, Leng Y, Sun X, Ribbe AE, Jiangh W, Mao C (2009) DNA self-assembly: from 2D to 3D. Faraday Discuss 143:221–233

    PubMed  CAS  Google Scholar 

  • Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006) 2D nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6:1502–1504

    PubMed  CAS  Google Scholar 

  • Zheng J, Lukeman PS, Sherman WB, Micheel C, Alivisatos AP, Constantinou PE, Seeman NC (2008) Metallic nanoparticles used to estimate the structural integrity of DNA motifs. Biophys J 95:3340–3348

    PubMed  CAS  Google Scholar 

  • Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R, Constantinou PE, Ginell SL, Mao C, Seeman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    PubMed  CAS  Google Scholar 

  • Zheng AX, Li J, Wang JR, Song XR, Chen GN, Yang HH (2012) Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly. Chem Commun 48:3112–3114

    CAS  Google Scholar 

  • Zhong H, Seeman NC (2006) RNA used to control a DNA rotary nanomachine. Nano Lett 6:2899–2903

    PubMed  CAS  Google Scholar 

  • Zhu L, Lukeman PS, Canary JW, Seeman NC (2003) Nylon/DNA: single-stranded DNA with a covalently stitched nylon lining. J Am Chem Soc 125:10178–10179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Welch Foundation (F-1654), the National Security Science and Engineering Faculty Fellowship (FA9550-10-1-0169), and the National Institutes of Health (1 R01 GM094933-02). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Ellington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, C., Ellington, A.D. (2014). DNA Nanotechnology: From Biology and Beyond. In: Kjems, J., Ferapontova, E., Gothelf, K. (eds) Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38815-6_6

Download citation

Publish with us

Policies and ethics