Skip to main content

DNA Origami

  • Chapter
  • First Online:
Nucleic Acid Nanotechnology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 29))

Abstract

The use of DNA as a building material for designing nanoscale objects is one of the exciting fields of nanotechnology. DNA origami, specifically, has only recently emerged as an extension of smaller folded DNA units since the appearance of immobile junctions and the assortment of structures that followed. DNA origami is the folding of a long single strand of DNA with many short complimentary oligonucleotides that act as “staples,” in which hybridization of duplex DNA through Watson–Crick base pairing drives assembly without the use of restriction enzymes or DNA ligase to construct the final two- or three-dimensional form (Rothemund 2006). This technique is valuable primarily due to the multi-nanometer to sub-micrometer scale of the structures produced and their finite nature, which offers greater control over self-assembly within a system in comparison to previously synthesized array structures that had the capacity to extend indefinitely (Mao et al. 1999a). The increasing complexity of structures produced parallels the technological advances in other areas as the availability of computing power and decreasing cost of creating synthetic oligonucleotides gave way to the first true DNA origami structures in 2006 (Rothemund 2006).

Arriving at multidimensional, precise origami assemblies provides a platform for spatial organization of other functional materials. Overhangs of oligonucleotides within the structure can be used as a specific address for heteroelements such as other DNA molecules (Rothemund 2006), RNA (Ke et al. 2008; Zhang et al. 2010; Subramanian et al. 2011; Rinker et al. 2008), proteins (Voigt et al. 2010; Shen et al. 2009), carbon nanotubes (Maune et al. 2010), metallic nanoparticles (Zheng et al. 2012; Ding et al. 2010a, b; Hung et al. 2009; Sharma et al. 2008; Pal et al. 2009), and quantum dots (Stearns et al. 2009; Bui et al. 2010; Tikhomirov et al. 2011) with nanometer precision. The defined and highly stable structure of DNA as a scaffold has great potential for enabling self-assembly of increasingly intricate systems, with applications that can be extended into almost any field of biochemistry, chemistry, or biophysics. In this chapter we will discuss the principles of designing DNA origami structures, the methods by which nanoscale assembly has been developed with increasing complexity, tools for creating and analyzing DNA structures, and examples of the functional applications of DNA origami.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen ES, Dong MD, Nielsen MM, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf KV, Besenbacher F, Kjems J (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–75

    Article  PubMed  CAS  Google Scholar 

  • Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  PubMed  CAS  Google Scholar 

  • Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl 38:2326–2343

    Article  PubMed  Google Scholar 

  • Bui H, Onodera C, Kidwell C, Tan Y, Graugnard E, Kuang W, Lee J, Knowlton WB, Yurke B, Hughes WL (2010) Programmable periodicity of quantum dot arrays with DNA origami nanotubes. Nano Lett 10:3367–3372

    Article  PubMed  CAS  Google Scholar 

  • Castro CE, Kilchherr F, Kim DN, Enrique LS, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229

    Article  PubMed  CAS  Google Scholar 

  • Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    Article  PubMed  CAS  Google Scholar 

  • Cohen JD, Sadowski JP, Dervan PB (2007) Programming multiple protein patterns on a single DNA nanostructure. J Am Chem Soc 130:402–403

    Article  Google Scholar 

  • Delebecque CJ, Linder AB, Silber PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    Article  PubMed  CAS  Google Scholar 

  • Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–729

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010a) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132:3248–3249

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Wu H, Zhao Z, Liu Y, Yu H, Yan H (2010b) Interconnecting gold islands with DNA origami nanotubes. Nano Lett 10:5065–5069

    Article  CAS  Google Scholar 

  • Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104(16):6644–6648

    Article  PubMed  CAS  Google Scholar 

  • Douglas SM, Dietz H, Liedl T, Hoegberg B, Graf F, Shih WM (2009a) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418

    Article  PubMed  CAS  Google Scholar 

  • Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009b) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006

    Article  PubMed  CAS  Google Scholar 

  • Du SM, Zhang SW, Seeman NC (1992) Dna junctions, antijunctions, and mesojunctions. Biochemistry 31(45):10955–10963

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Hidaka K, Kato T, Namba K, Sugiyama H (2009) DNA prism structures constructed by folding of multiple rectangular arms. J Am Chem Soc 131(43):15570–15571

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Sugita T, Katsuda Y, Hidaka K, Sugiyama H (2010) Programmed-assembly system using DNA jigsaw pieces. Chem Eur J 16:5362–5368

    Article  PubMed  CAS  Google Scholar 

  • Fu T, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Liu M, Liu Y, Woodbury NM, Yan H (2012a) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Liu M, Liu Y, Yan H (2012b) Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc Chem Res 8:1215–1226

    Article  Google Scholar 

  • Gu H, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  PubMed  CAS  Google Scholar 

  • Guo P (2010) The emerging field of RNA technology. Nat Nanotechnol 5:833–842

    Article  PubMed  CAS  Google Scholar 

  • Han DR, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5:712–717

    Article  PubMed  CAS  Google Scholar 

  • Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  PubMed  CAS  Google Scholar 

  • Högberg B, Leidl T, Shih WM (2009) Folding DNA origami from a double-stranded source of scaffold. J Am Chem Soc 131:9154–9155

    Article  PubMed  Google Scholar 

  • Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2009) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5:121–126

    Article  PubMed  Google Scholar 

  • Jaeger L (2009) Defining the syntax for self-assembling RNA tertiary architecture. Nucleic Acids Symp Ser 53:83–84

    Article  CAS  Google Scholar 

  • Jahn K, Tørring T, Voigt NV, Sørensen RS, Kodal ALB, Andersen ES, Gothelf KV, Kjems J (2011) Functional patterning of DNA origami by parallel enzymatic modification. Bioconjug Chem 22:819–823

    Article  PubMed  CAS  Google Scholar 

  • Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–4761

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Lindsay S, Chang Y, Liu Y, Yan H (2008) Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319:180–183

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H (2009a) Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett 9(6):2445–2447

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Douglas SM, Liu M et al (2009b) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131(43):15903–15908

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kilchherr F, Dietz H, Bathe M (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40(7):2862–2868

    Article  PubMed  CAS  Google Scholar 

  • Ko SH, Su M, Zhang C, Ribbe AE, Jiang W, Mao C (2010) Synergistic self-assembly of RNA and DNA molecules. Nat Chem 2:1050–1055

    Article  PubMed  CAS  Google Scholar 

  • Kosuri S (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Nanotechnol 28:1295–1299

    Article  CAS  Google Scholar 

  • Kuzuya A, Komiyama M (2009) Design and construction of a box-shaped 3D-DNA origami. Chem Commun 28:4182–4184

    Article  Google Scholar 

  • Kuzuya A, Kimura M, Numajiri K, Koshi N, Ohnishi T, Okada F, Komiyama M (2009) Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly. Chembiochem 10:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Kuzyk A, Laitinen KT, Torma P (2009) DNA origami as a nanoscale template for protein assembly. Nanotechnology 20:235305

    Article  PubMed  Google Scholar 

  • Li Z, Liu M, Wang L, Nangreave J, Yan H, Liu Y (2010) Molecular behavior of DNA origami in higher-order self-assembly. J Am Chem Soc 132(38):13545–13552

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wang L, Yan H, Liu Y (2012) Effect of DNA hairpin loops on the twist of planar DNA origami tiles. Langmuir 28(4):1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Liedl T, Högberg B, Tytell J, Ingber DE, Shih WM (2010) Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol 5:520–524

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Rinker S, Wang X, Liu Y, Seeman NC, Yan H (2007) Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure. J Am Chem Soc 129:14475–14481

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Rinker S, Wang X, Liu Y, Seeman NC, Yan H (2008) In vivo cloning of artificial DNA nanostructures. Proc Natl Acad Sci USA 105:17626–17631

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Geng Y, Pound E, Gyawali S, Ashton JR, Hickey J, Woolley AT, Harb JH (2001) Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 5(3):2240–2247

    Article  Google Scholar 

  • Liu D, Wang M, Deng Z, Walulu R, Mao C (2004) Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 126(8):2324–2325

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Tørring T, Dong M, Rosen CB, Besenbacher F, Gothelf KV (2010) DNA-templated covalent coupling of G4 PAMAM dendrimers. J Am Chem Soc 132:18054–18056

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zhong H, Wang R, Seeman NC (2011) Crystalline two-dimensional DNA-origami arrays. Angew Chem Int Ed Engl 50:264–267

    Article  PubMed  CAS  Google Scholar 

  • Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  PubMed  CAS  Google Scholar 

  • Maier SA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  PubMed  CAS  Google Scholar 

  • Majumder U, Rangnekar A, Gothelf KV, Reif JH, LaBean TH (2011) Design and construction of a double-decker tile as a route to three-dimensional periodic assembly of DNA. J Am Chem Soc 133:3843–3845

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Sun W, Seeman NC (1999a) Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J Am Chem Soc 121(23):5437–5442

    Article  CAS  Google Scholar 

  • Mao C, Sun W, Shen Z, Seeman NC (1999b) A nanomechanical device based on the B-Z transition of DNA. Nature 397:144–146

    Article  PubMed  CAS  Google Scholar 

  • Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    Article  PubMed  CAS  Google Scholar 

  • Mei Q, Wei X, Su F, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Nakata E, Liew FF, Uwatoko C, Kiyonaka S, Mori Y, Katsuda Y, Endo M, Sugiyama H, Morii T (2012) Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. Angew Chem Int Ed Engl 51:2421–2424

    Article  PubMed  CAS  Google Scholar 

  • Numajiri K, Kimura M, Kuzuya A, Komiyama M (2010a) Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. Chem Commun 46:5127–5129

    Article  CAS  Google Scholar 

  • Numajiri K, Yamazaki T, Kimura M, Kuzuya A, Komiyama M (2010b) Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation. J Am Chem Soc 132:9937–9939

    Article  PubMed  CAS  Google Scholar 

  • Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Sharma J, Yan H, Liu Y (2009) Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem Commun (Camb) (40):6059–6061

    Google Scholar 

  • Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y (2011) Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the Tollens reaction. Angew Chem Int Ed Engl 50:4176–4179

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6(12):763–772

    Article  PubMed  CAS  Google Scholar 

  • Pound E, Ashton JR, Becerril HA, Woolley AT (2009) Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. Nano Lett 9(12):4302–4305

    Article  PubMed  CAS  Google Scholar 

  • Rinker S, Ke Y, Liu Y, Chhabra Y, Yan H (2008) Self-assembled DNA nanostructures for distance dependent multivalent ligand-protein binding. Nat Nanotechnol 3(7):418–422

    Article  PubMed  CAS  Google Scholar 

  • Rothemund P (2006) Folding DNA, to create nanoscale shapes and patterns. Nature 440:297–302

    Article  PubMed  CAS  Google Scholar 

  • Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA sierpinski triangles. PLoS Biol 2(12):2041–2053

    Article  CAS  Google Scholar 

  • Saaem I, Kuo-Sheng M, Marchi AN, LaBean TH, Tian J (2010) In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS Appl Mater Interfaces 2:491–497

    Article  PubMed  CAS  Google Scholar 

  • Sacca B, Meyer R, Erkelenz M, Kiko K, Arndt A, Schroeder H, Rabe KS, Niemeyer CM (2010) Orthogonal protein decoration of DNA origami. Angew Chem Int Ed Engl 49:9378–9383

    Article  PubMed  CAS  Google Scholar 

  • Schuller JA et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  PubMed  CAS  Google Scholar 

  • Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9(3):1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130:7820–7821

    Article  PubMed  CAS  Google Scholar 

  • Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103:18911–18916

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Zhong H, Neff D, Norton ML (2009) NTA directed protein nanopatterning on DNA origami nanoconstructs. J Am Chem Soc 131:6660–6661

    Article  PubMed  CAS  Google Scholar 

  • Shih W, Quispe J, Joyce G (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975):618–621

    Article  PubMed  CAS  Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 1:18–52

    Article  PubMed  CAS  Google Scholar 

  • Snelson K (1996) Snelson on the tensegrity invention. Int J Space Struct 11:43–48

    Google Scholar 

  • Stearns LA, Chhabra R, Sharma J, Liu Y, Petuskey WT, Yan H, Chaput JC (2009) Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds. Angew Chem Int Ed Engl 48:8494–8496

    Article  PubMed  CAS  Google Scholar 

  • Stein IH, Schüller V, Böhm P, Tinnefeld P, Liedl T (2011a) Single-molecule FRET ruler based on rigid DNA origami blocks. Chemphyschem 12:689–695

    Article  PubMed  CAS  Google Scholar 

  • Stein IH, Steinhauer C, Tinnefeld P (2011b) Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. J Am Chem Soc 133:4193–4195

    Article  PubMed  CAS  Google Scholar 

  • Steinhauer C, Jungmann R, Sobey TL, Simmel FC, Tinnefeld P (2009) DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew Chem Int Ed Engl 48:8870–8873

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos N, Liu MH, Tong GJ, Li Z, Liu Y, Yan H, Francis MB (2010) Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. Nano Lett 10:2714–2720

    Article  PubMed  CAS  Google Scholar 

  • Subramani R, Juul S, Rotaru A, Andersen FF, Gothelf KV, Mamdouh W, Besenbacher F, Dong M, Knudsen BR (2010) A novel secondary DNA binding site in human topoisomerase I unravelled by using a 2D DNA origami platform. ACS Nano 4:5969–5977

    Article  PubMed  CAS  Google Scholar 

  • Subramanian HKK, Chakraborty B, Sha R, Seeman NC (2011) The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. Nano Lett 11:910–913

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Voigt NV, Nangreave J, Yan H, Gothelf KV (2011) DNA origami: a quantum leap for self-assembly of complex structures. Chem Soc Rev 40(12):5636–5646

    Article  Google Scholar 

  • Tian J, Ma K, Saaem I (2009) Advancing high-throughput assembly of nanoclusters. Mol Biosyst 5:714–722

    Article  PubMed  CAS  Google Scholar 

  • Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490

    Article  PubMed  CAS  Google Scholar 

  • Voigt NV, Tørring T, Rotaru A, Jacobsen MF, Rabnsbæk JB, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf KV (2010) Single-molecule chemical reactions on DNA origami. Nat Nanotechnol 5:200–203

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–627

    Article  PubMed  CAS  Google Scholar 

  • Westhof E, Masquida B, Jaeger L (1996) RNA tectonics: towards RNA design. Fold Des 1:R78–R88

    Article  PubMed  CAS  Google Scholar 

  • Wickham SF, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Lund K, Lin C, Wonka P, Lindsay S, Yan H (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. Lect Notes Comp Sci 5347:90–101

    Article  Google Scholar 

  • Woo S, Rothemund PWK (2011) Programmable molecular recognition based on the geometry of DNA nanostructures. Nat Chem 3:620–627

    Article  PubMed  CAS  Google Scholar 

  • Yan H, LaBean TH, Feng L, Reif JH (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100(14):1803–1808

    Article  Google Scholar 

  • Yang Y, Han D, Nangreave J, Liu Y, Yan H (2012) DNA origami with double-stranded DNA as a unified scaffold. ACS Nano 6(9):8209–8215

    Article  PubMed  CAS  Google Scholar 

  • Yoshidome T, Endo M, Kashiwazaki G, Hidaka K, Bando T, Sugiyama H (2012) Sequence-selective single-molecule alkylation with a pyrrole-imidazole polyamide visualized in a DNA nanoscaffold. J Am Chem Soc 134:4654–4660

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zeng D, Ma H, Feng G, Hu J, He L, Li C, Fan C (2010) A DNA-origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. Small 6(17):1854–1858

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chao J, Pan D, Liu H, Huang Q, Fan C (2012) Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem Commun 48:6405–6407

    Article  CAS  Google Scholar 

  • Zhao Z, Yan H, Liu Y (2010) A route to scale up DNA origami using DNA tiles as folding staples. Angew Chem Int Ed Engl 49:1414–1417

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Li Y, Deng Z (2012) Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Commun 48:6160–6162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edwards, A., Yan, H. (2014). DNA Origami. In: Kjems, J., Ferapontova, E., Gothelf, K. (eds) Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38815-6_5

Download citation

Publish with us

Policies and ethics